Location Entry Codes

www.tiremepapers.com As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

UNIVERSITY of

International Exa

The content assessed by the examination papers and the type of questions are unchanged.

This change means that for this component there are now two variant Question Papers. Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Mark Scheme **Question Paper Principal Examiner's Report** Introduction Introduction Introduction **First variant Question Paper** First variant Mark Scheme First variant Principal Examiner's Report Second variant Question Paper Second variant Mark Scheme Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2008 question paper

0580/0581 MATHEMATICS

0580/21 and 0581/21 Paper 21 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations First variant Mark Scheme

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2008	0580/0581	21

	52 1.50	1 1	in the sector for the stress
1	53 and 59	1,1	independent of each other
2	$\frac{11x}{18}$	2	M1 $\frac{6x}{18} + \frac{10x}{18} - \frac{5x}{18}$ oe fractions with common denom. not decimals
3	150	2	M1 $\frac{18}{12} \times 100$
4	(a) 2870	1	cao
	(b) $(n+3)^2 + 1$	1	Allow $n^2 + 6n + 10$, $(n + 2 + 1)^2 + 1$, $(n - 1 + 4)^2 + 1$ oe
5	\$231.13 cao	2	M1 245 / 1.06 or 245 × 0.94(3) Allow 231, 231.1, 231.13 for M1
6	$\frac{598}{601} \ \frac{399}{401} \ \frac{698}{701}$	2	M1 correct decimals seen 0.99501 0.9957(2) 0.99500 First and third must be to at least 5sf Accept these decimals in answer space
7	(a) 1045.28 cao	1	
	(b) 10 <u>00</u>	1	Allow 1.0×10^3
8	$9x^2$	2	B1 9 B1 x^2 terms must be multiplied
9	$y = \frac{1}{2} x + 5$	3	M1 (<i>m</i> =) $\frac{8-5}{6-0}$ oe B1 (<i>c</i> =) 5
			or M1 A1 $y-8 = \frac{1}{2}(x-6)$ or $y -5 = \frac{1}{2}(x-0)$ Allow 3/6 for the $\frac{1}{2}$ A1 $y = \frac{1}{2}x + 5$ or $2y - x = 10$ oe
10	r = 18 $h = 42$ cao www	3	M1 Length scale factor of 6 used or stated Al Al
11	(±) 7.94	3	M1 $21^2 = (2x)^2 + x^2 - 2.2x \cdot x \cdot \cos 120$ oe M1 $441 = 7x^2$
12	(a) $\left[\begin{array}{c} p \\ 75 \\ 11 \\ 2 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 \\ 16 $	2	B1 P and S not intersecting. Two sets must be labelled Three intersecting circles will have $P \cap S$ empty.
13	(b) 4 $x < -23\frac{1}{2}$ or -23.5	1√ 3	from the number of elements in the shaded area M1 2 moves completed correctly M1 2 more moves completed correctly

Page 3 Ma		Mark Scheme		cheme	Syllabus	Paper
				/June 2008	0580/0581	21
14	5.5 cm	5.5 cm	1 1 1	Line in correct place; bise Line 2cm long in correct $\frac{1}{4}$ circles in correct place Not freehand.		
15	$\begin{pmatrix} -11\\ -11\\ -14 \end{pmatrix}$		1 1 1			
16	(1, 3) www		3	M1 consistent multiplicat A1 A1 Allow $x = 1$ and $y = 3$ (1, k) or $(k, 3)$ scores 2 ma		
17	20		4	B1 $\frac{370 + x}{500 + x} = \frac{3}{4}$ or fr M1 two moves complet M1 two more correct n		age
18	(a) −14		1			
	(b) $2x^3 - 6x^2$	+12x-9	2	M1 attempting to double f	(x) and -1	
	(c) $\frac{x+1}{2}$		2	M1 valid method		
19	(a) (i) Trian	ngle (-1, -2)(-1, -3)(-3, -2)	2	M1 for one correct vertex	of the triangle drawn on	the diagram
	(ii) Refle	ction in $y = -x$	2	M1 for the word reflection Combined transformation but -1 once for the detail (must be fully correct to t	he final answer
	$(b) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$		2	B1 each column or M1 solving two pairs of si A1 all correct in answer sp		
20	(a) 12900		3	M1 $(160^2 \text{ or } 100^2) \times \pi \times$ M1 subtracting the two		
	(b) 23300		1√	(a) multiplied by 1.8		
	(c) (i) 2.33	5×10^{13}	1√	(b) $\times 10^{9}$		
	(ii) 1.55	5×10^{13}	2√	M1 (c)(i) / 1.5		

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2008	0580/0581	21

21	(a) 11.3	5	B1 identifying angle FAC M1 $600^2 + 800^2$ Al 1000 (for AC) M1 term = 200/their 1000
			$M1 \tan x = 200/\text{their } 1000$ (or cosx = "1000"/"1020")
			Alternative method via DF and AF M1 " $(200^2 + 600^2)$ " + 800 ² Al 1020 M1 sinx/(sin90) = 200/"1020" oe cosine rule also possible
	(b) 233	3	M1 $tany = 800/600$ oe $siny$, $cosy$ M1 an angle found in (b) + 180 written in working

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2008 question paper

0580/0581 MATHEMATICS

0580/22 and 0581/22 Paper 22 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2008	0580/0581	22

1	59 and 61	1, 1	independent of each other
1		1, 1	independent of each other
2	$\frac{13x}{18}$	2	M1 $\frac{6x}{18} + \frac{14x}{18} - \frac{7x}{18}$ oe fractions with common denom. not decimals
3	140	2	M1 $\frac{21}{15} \times 100$
4	(a) 1240	1	cao
	(b) $(n+4)^2 + 1$	1	Allow $n^2 + 16n + 17$, $(n + 3 + 1)^2 + 1$, $(n - 1 + 5)^2 + 1$ oe
5	\$308.41 cao	2	M1 330 / 1.07 or 330 × 0.93(4579) Allow M1 308, 308.4(1)
6	$\frac{598}{601} \ \frac{399}{401} \ \frac{698}{701}$	2	M1 correct decimals seen 0.99501 0.9957(2) 0.99500 First and third must be to at least 5sf Accept these decimals in answer space
7	(a) 2045.49 cao	1	
	(b) 20 <u>00</u>	1	Allow 2.0×10^3
8	8 <i>x</i> ³	2	B1 8 B1 x^3 terms must be multiplied
9	$y = \frac{1}{2} x + 7$	3	M1 (<i>m</i> =) $\frac{10-7}{6-0}$ oe B1 (<i>c</i> =) 7
			or M1 A1 $y - 10 = \frac{1}{2}(x-6)$ or $y - 7 = \frac{1}{2}(x-0)$ Allow 3/6 for the $\frac{1}{2}$ A1 $y = \frac{1}{2}x + 7$ or $2y - x = 14$ oe
10	r = 24 $h = 36$ cao www	3	M1 Length scale factor of 6 used or stated Al Al
11	(±) 7.21	3	M1 $26^2 = (3x)^2 + x^2 - 2.3x \cdot x \cdot \cos 120$ oe M1 $676 = 13x^2$
12	(a) ξ 75 - 4 + 11 - 3 - 6 - 9 - 1 + 16 + 16 + 16 + 16 + 16 + 16 + 16	2	B1 P and S not intersecting. Two sets must be labelled Three intersecting circles will have $P \cap S$ empty.
12	(b) 4 $r < -23^{1}$ or -235	1√	from the number of elements in the shaded area
13	$x < -23\frac{1}{2}$ or -23.5	3	M1 2 moves completed correctly M1 2 more moves completed correctly

	Page 3		Mark S	Scheme	Syllabus	Paper
				ay/June 2008	0580/0581	22
14	5.5 cm	5.5 cm	1 1 1	Line A in correct place; bise Line 2cm long in correct pla $\frac{1}{4}$ circles in correct place Not freehand.		
15	$\begin{pmatrix} -11\\ -11\\ -14 \end{pmatrix}$		1 1 1			
16	(1, 3) www		3	M1 consistent multiplication A1 A1 Allow $x = 1$ and $y = 3$ (1, k) or (k, 3) scores 2 mark	s ONLY if M1 is score	d
17	20		4	B1 $\frac{370 + x}{500 + x} = \frac{3}{4}$ oe fract M1 two moves completed M1 two more correct mov		e
18	(a) −17		1			
	(b) $2x^3 - 6x^2$	+12x-17	2	M1 attempting to double $f(x)$	and -3	
	(c) $\frac{x+3}{2}$		2	M1 valid method		
19	(a) Triangle	(-1, -2)(-1, -3)(-3, -2)	2	M1 for one correct vertex of	the triangle drawn on the	e diagram
	Reflection	n in y = -x	2	M1 for the word reflection A Combined transformation mu but -1 once for the details (e.	ist be fully correct to the	specified answer
	(b) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$		2	B1 each <u>column</u> or M1 solving two pairs of sim. A1 all correct in matrix	equations	
20	(a) 12900		3	M1 $(160^2 \text{ or } 100^2) \times \pi \times 95^2$ M1 subtracting the two are		
	(b) 23300		1√	(a) multiplied by 1.8		
	(c) (i) 2.33		1	(b) $\times 10^{9}$		
	(ii) 1.55	5×10^{13}	2	M1 (c)(i) / 1.5		

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – May/June 2008	0580/0581	22

21	(a) 11.3	5	B1 identifying angle FAC M1 $600^2 + 800^2$ Al 1000 (for AC)
			$M1 \tan x = 200/their 1000$
			$(\text{or } \cos x = "1000"/"1020")$
			Alternative method via DF and AF
			M1 " $(200^2 + 600^2)$ " + 800 ² Al 1020
			M1 sinx/(sin90) = 200/"1020" oe cosine rule also possible
	(b) 233	3	M1 $tany = 800/600$ oe $siny$, $cosy$ M1 an angle found in (b) + 180 written in working