Location Entry Codes

www.tiremepapers.com As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

UNIVERSITY of

International Exa

The content assessed by the examination papers and the type of questions are unchanged.

This change means that for this component there are now two variant Question Papers. Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Mark Scheme **Question Paper Principal Examiner's Report** Introduction Introduction Introduction **First variant Question Paper** First variant Mark Scheme First variant Principal Examiner's Report Second variant Question Paper Second variant Mark Scheme Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

0580, 0581 MATHEMATICS

0580/21, 0581/21 Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations First variant Mark Scheme

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0580, 0581	21

Abbreviations

- cao correct answer only
- ft follow through after an error
- oe or equivalent
- SC Special Case
- www without wrong working

1	(a)	2	1	Any length, can be freehand lines
	(b)		1	Mark lost if additional lines drawn or axes extended
2		$\frac{5}{7}$ 72% $\sqrt{\frac{9}{17}} \left(\frac{4}{3}\right)^{-1}$	2	M1 correct decimals 0.727(6) 0.71(4) 0.72 0.75
3	(a)	06 41	1	Allow 6.41(am). 6:41 and 06:41 Not 6h41m or 641h or 6 41pm
	(b)	\$204	1	
4			1, 1	
5		$\frac{1}{2} \begin{pmatrix} 5 & -3 \\ 4 & -2 \end{pmatrix} \text{ or } \begin{pmatrix} 2.5 & -1.5 \\ 2 & -1 \end{pmatrix}$	2	M1 det A or $ \mathbf{A} $ or $5 \times -2 - 4 \times -3 = 2$ or $\begin{pmatrix} 5 & -3 \\ 4 & -2 \end{pmatrix}$ or $\frac{1}{2} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ seen Allow 5/2, -3/2, 4/2, -2/2 in matrix
6		62225000 or 6.2225×10^7 or 62.225 million cao	2	M1 9.5(million) and 6.55 seen 3sf not appropriate for UB and not allowed for 2 marks
7		(4, 2)	2	M1 $\frac{2+6}{2}$ and $\frac{-5+9}{2}$ oe or a drawing used correctly

First variant Mark Scheme

Page 3		Mark Scheme: Te	acher	s' version	Syllabus	abus Paper	
		IGCSE – May	/June	2009	0580, 0581	21	
8 (a)	$2\mathbf{a} - \mathbf{g}$ ca	10	1	$-\mathbf{g}+2\mathbf{a}$			
(b)	$2\frac{1}{2}a + \frac{1}{2}g$	g oe cao	1	Allow 2.5 or $\frac{5}{2}$ and 0.5			
9	$(9(1-x))^2$	oe	3	M1 1 move completed correctly M1 1 more move completed correctly Mark 3rd move in answer space			
10	$\frac{2}{c}$		3	M1 $d+c-c+d$ or better M1 common denominator cd used			
11	£3000		3	M1 1.96 × 25000 M1 "49000" / 1.75			
12	x = 4 $y =$	3	3	M1 consistent multiplication and subtraction of their rearranged eqns. Any other answers must first score M1 to gain an A mark Substitution, matrix and equating methods also permitted			
13	0.128		3	M1 $t = k/d^2$ k is any letter except t, d or α A1 $k = 12.8$ or M1 $0.2 \times 8^2 = 12.8$			
14 (a)	3×10^{11}		2	M1 $60 \times 5 \times 10^9$ c	or better		
(b)	5 000 000	or 5×10^6 or 5 million	2	M1 $0.8 \times 10^7 - 3 \times 10^6$ oe or M1 $5x = 4 \times 10^7 - 15 \times 10^6$ oe If m is used for a million it must be used consistently			
15 (a)	24.7		2	M1 $\sin 18 = AB/80$ Allow $AB/\sin 18 =$) or $\cos 72 = AB/80$ 80/sin90		
(b)	11.5		2	M1 $\tan 25 = h/(a)$ or $h/\sin 25 = (a)/\sin 65$			
16	Angle bis	ector of angle in the middle ngle bisector drawn	4	 W1 correct bisector drawn W1 at least two arcs drawn on the arms and one pair of correct crossing arcs W1 as above W1 as above Accuracy ±1° but line must go from edge to edge. 		and one ge to edge.	

First variant Mark Scheme

Page 4		Mark Scheme	: Teacher	ers' version Syllabus		
		IGCSE –	May/June	2009	0580, 0581	21
17 (a) (b)	Reflection Triangle a	$\sin y = x$ t (4,6), (4, 7), (7, 7)	2 2	M1 Reflection A1 correct descrip M1 Rotation 90°	ption of the line clockwise A1 positio	n
18 (a) (b)	320 567		2 2	M1 $1080 \times 8/27$ $1080 \div 27/8$ M1 $252 \times 9/4$ or $252 \div 4/9$ or	or $(2/3)^3$ or or $(3/2)^3$ $(3/2)^2$ or $(2/3)^2$	
19	314		4	$\begin{array}{c} \mathbf{M1} \ \pi. \ 18^2 \ . \ 40/36 \\ \mathbf{M1} \ \pi. \ 6^2 \ (\text{or } \pi. \ 6) \\ \mathbf{M1} \ 2 \times (OAD - C) \\ \mathbf{OR} \\ \mathbf{M1} \ \pi. \ 18^2 \ . \ 40/36 \\ \mathbf{M1} \ \pi. \ 6^2 \ . \ 140/36 \\ \mathbf{M1} \ 2 \times OAD + 2 \end{array}$	0 or OAD = 113 iden $2 \cdot 40/360) \text{ or } OBC OBC) + \text{ circle oe}$ $0 \cdot OBC) + \text{ circle oe}$ $0 \cdot OBC \text{ oe}$	tified ."
20	$\frac{draw 2x - draw x + y}{draw y = 4}$ $\frac{draw x + y}{correct res}$	y = 4 y = 6 z = 7 z = 6 z = 6 z = 7 z = 6 z = 7 z =	2 1 1 1	W1 Line through R 0 6	(2,0) or (0,-4)	
21 (a)	$ \begin{pmatrix} 2x+12\\ 14 \end{pmatrix} $	$3x+6 \\ 15$	2	M1 for any correct Allow $2(x + 6)$, 30	ct row or column $(x+2)$	
(b)	5		3	M1 $\begin{pmatrix} 2x+12 & 2\\ 2x+4 & 12\\ M1 & 2x+4 = 14 \text{ o} \end{pmatrix}$	$\begin{pmatrix} 1 \\ 5 \end{pmatrix}$ one row (or column r $3x + 6 = 21$	nn) correct
22 (a)	58		1			
(b)	32	32 1				
(c)	58		1 ft	$1 \text{ ft} = (\mathbf{a})$		
(d)	24		2			

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the May/June 2009 question paper

for the guidance of teachers

0580, 0581 MATHEMATICS

0580/22, 0581/22 Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations Second variant Mark Scheme

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0580, 0581	22

Abbreviations

- correct answer only cao
- follow through after an error ft
- or equivalent oe Special Case SC
- without wrong working www

1	(a)	2	1	Any length, can be freehand lines
	(b)		1	solid or dotted Mark lost if additional lines drawn or axes extended
2		$\frac{18}{25} \sqrt{\frac{8}{15}} 74\% \left(\frac{27}{20}\right)^{-1}$	2	M1 correct decimals 0.74 0.730(2) 0.72 0.740(7)
3	(a) (b)	06 43 \$247	1	Allow 6.43(am) Not 6h43m or 643h or 6.43pm
4			1, 1	
5		$\frac{1}{10} \begin{pmatrix} 3 & -7 \\ 4 & -6 \end{pmatrix} $ oe	2	M1 det A or $ \mathbf{A} $ or $-6 \times 3 - 7 \times -4 = 10$ or $\begin{pmatrix} 3 & -7 \\ 4 & -6 \end{pmatrix}$ or $\frac{1}{10} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ seen
6		62225000 or 6.2225×10^7 or 62.225 million cao	2	M1 9.5(million) and 6.55 seen 3sf not appropriate for UB and not allowed for 2 marks
7		(6, 3)	2	M1 $\frac{4+8}{2}$ and $\frac{-7+13}{2}$ oe or a drawing used correctly

Second variant Mark Scheme

Page 3		Mark Scheme: Te	acher	s' version	Syllabus Pape	
		IGCSE – May	/June	2009	0580, 0581	22
8 (a)	$2\mathbf{a} - \mathbf{g}$ ca	10	1	- g + 2 a		
(b)	$2\frac{1}{2}a + \frac{1}{2}g$	g oe cao	1	Allow 2.5 or $\frac{5}{2}$ and	10.5	
9	$(8(1-x))^2$	e oe	3	M1 1 move comp M1 1 more move Mark 3rd move in	leted correctly completed correctly answer space	
10	$\frac{2}{c}$		3	M1 $d+c-c+d$ or better M1 common denominator cd used		
11	£2400		3	M1 3.92 × 20000 M1 "78400" / 3.50		
12	x = 5 $y =$	-2	3	M1 consistent multiplication and subtraction of their rearranged eqns. Any other answers must first score M1 to gain an A mark Substitution, matrix and equating methods also permitted		
13	0.625 or -	<u>5</u> <u>3</u>	3	M1 $t = k/d^2$ or $td^2 = k$ or M1 $0.4 \times 5^2 = 10$ A1 $k = 10$ <i>k</i> is any letter except <i>t</i> , <i>d</i> or α		
14 (a)	4.8×10^{11}		2	M1 $60 \times 8 \times 10^9$ c	or better	
(b)	5 000 000	or 5×10^6 or 5 million	2	M1 $0.8 \times 10^7 - 3 \times 10^6$ oe or M1 $5x = 4 \times 10^7 - 15 \times 10^6$ oe If m is used for a million it must be used consistently		
15 (a)	24.7		2	$\mathbf{M1} \sin 18 = AB/80$) or $\cos 72 = AB/80$	
(b)	11.5		2	Allow $AB/\sin 18 = 80/\sin 90$ M1 $\tan 25 = h/(a)$ or $h/\sin 25 = (a)/\sin 65$		
16	Angle bise Second an	ector of angle in the middle ngle bisector drawn	2 2	 W1 correct bisector drawn W1 at least two arcs drawn on the arms and one pair of correct crossing arcs W1 as above W1 as above Accuracy ±1° but line must go from edge to edge. 		s and one ge to edge.

Second variant Mark Scheme

Pa	age 4	Mark Scheme	: Teacher	ers' version Syllabus F				
		IGCSE –	May/June	ie 2009 0580, 0581				
17 (a) (b)) Reflection in $y = x$) Triangle at (4,6), (4, 7), (7, 7)		x2M1 Reflection A1 correct description of the line M1 Rotation 90° clockwise A1 position $(4, 7), (7, 7)$ 2					
18 (a) (b)	320 567			2 M1 $1080 \times 8/27$ or $(2/3)^3$ or $1080 \div 27/8$ or $(3/2)^3$ 2 M1 $252 \times 9/4$ or $(3/2)^2$ or $252 \div 4/9$ or $(2/3)^2$				
19	314		4	$\begin{array}{c} \mathbf{M1} \ \pi. \ 18^2 \ . \ 40/36 \\ \mathbf{M1} \ \pi. \ 6^2 \ (\text{or } \pi. \ 6^2 \\ \mathbf{M1} \ 2 \times (OAD - C \\ \mathbf{OR} \\ \mathbf{M1} \ \pi. \ 18^2 \ . \ 40/36 \\ \mathbf{M1} \ \pi. \ 6^2 \ . \ 140/36 \\ \mathbf{M1} \ 2 \times OAD + 2 \end{array}$	0 or $OAD = 113$ iden 2. 40 /360) or OBC OBC + circle oe 0 (=113.10) 0 (=43.98) × BOE oe	tified ."		
20 (a) (b)	$\frac{draw 2x - draw x + y}{draw y = 4}$	y = 4 y = 6 4 gion identified by R	2 1 1	W1 Line through R 0 6	(2,0) or (0,-4)			
21 (a)	$ \begin{pmatrix} 2x + 12 \\ 14 \end{pmatrix} $	$3x+6 \\ 15$	2	M1 for any correct Allow $2(x + 6)$, 3(et row or column $(x+2)$			
(b)	5		3	M1 $\begin{pmatrix} 2x+12 & 2x \\ 2x+4 & 15 \end{pmatrix}$ M1 $2x+4 = 14$ or	$\begin{pmatrix} 1 \\ 5 \end{pmatrix} \text{ one row (or colum)}$ r 3x + 6 = 21	nn) correct		
22 (a)	58		1					
(b)	32		1					
(c)	58		1 ft	= (a)				
(d)	24		2					