www. tremepaders.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

0580, 0581 MATHEMATICS

0580/04, 0581/04 Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0580, 0581	04

Abbreviations

cao correct answer only cso correct solution only

dep dependent

ft follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

www without wrong working

= 0	DA	3.54.0 (5.0 (0 . 1) 0
50	B 2	M1 for $650 \div (9+4) \times 9$
		$(\div 14 \text{ does not imply } 9 + 4)$
20	B2	M1 for 0.8×150 o.e.
0 ft	B2 ft	M1 for $(150 - \text{their}(\mathbf{b})(\mathbf{i})) \div 0.375$ o.e.
		only if +ve. After M0 , SC1 for answer 320
41	B2	M1 for 400×1.05^2 o.e. or for answer 41
		If use Simple Int in (i), M0, M0 in this
		part
$eir((i) - 400) \div 400 \times 100$ o.e.	M2	i.e. a full explicit method for r
		If M0 ,
		$400 \times r \times 2$
5 or 5.13 or 5.12 c.a.o. www3	A1	M1 for $\frac{400 \times r \times 2}{100}$ = their (i) – 400
		100
		4 ' (2) - 400 - 100 4 100
		or their (i) $\div 400 \times 100 \text{ then} - 100$
		1 1 0 100
		or $\frac{\text{their} (\mathbf{i}) - 400}{1000} \times 100$ (s.o.i. by 10.25)
		400
		If still M0 , SC1 for answers 55.125 or
		55.12 or 55.13 or 55.1 or 0.05125 or
		0.0512 or 0.0513
		[11]
	0 ft	20 B2 0 ft B2 ft 41 B2 eir ((i) - 400) ÷ 400×100 o.e. M2

2 (a)	1	B1	
(b)	2.5 o.e.	B1	
(c)	2.96 c.a.o.	B2	If B0 , M1 for
			$15 \times 1 + 10 \times 2 + 7 \times 3 + 5 \times 4 + 6 \times 5 + 7 \times 6$
			(allow one slip) implied by 148 seen
			Ignore subsequent rounding
(d)	60 × 2.95 (= 177)	M1	
	their 177 – their 148 (or 50 × their 2.96)	M1	Dependent on first M and <u>only if</u> positive or M1 for
	(Mean of new rolls =) 2.9 c.a.o. www3	A1	$\frac{\text{their } 148(50 \times \text{their } 2.96) + x(\text{or } 10x)}{60} = 2.95$
			then M1 for $x(\text{or } 10x) = 60 \times 2.95 - \text{their } 148$
			(or $50 \times$ their 2.96) and <u>only if</u> positive [7]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0580, 0581	04

3 (a)	$(\sin P) = \frac{48}{0.5 \times 10 \times 14} \text{ o.e. } \frac{\text{fraction}}{\text{o.e.}}$	M2	M1 for $0.5 \times 10 \times 14 \sin P = 48$ o.e. Allow $0.5 \times 10 \times 14 \sin 43.3 = 48$ for M1 but no further credit
	P = 43.29 cao	A1	but no further credit
(b)	$10^2 + 14^2 - 2 \times 10 \times 14\cos 43.3 (= 92.2)$	M2	If M0 , M1 for correct implicit statement
	Evaluating square root	M1	M1 (dependent on M2) for square root of correct combination (not negative)
			i.e 16cos43.3 (11.64) implies M2M0
	(QR =) 9.6(0) (9.60 to 9.603) c.a.o. ww2	A1	[7]

4 (a)	$(AB =)$ $\frac{250}{\sin 126} \times \sin 23$ (s.o.i by 120) 121 (120.7 to 121) (m) c.a.o. www3	M2 A1	M1 for $\frac{AB}{\sin 23} = \frac{250}{\sin 126}$ o.e. (implicit)
(b) (i)	280	B 1	
(ii)	(0)69 c.a.o.	B2	SC1 for answer 249 [6]

5 (a) (i)	1.5, 3.75, -1.5	B1,B1,B1	
(ii)	12 points plotted ft	P3 ft	P2 ft for 10 or 11 points,
	Curve through at least 10 points and correct		P1 ft for 8 or 9 points
	shape over full domain	C1	i.s.w. if two branches joined
	Two separate branches, one on each side of		
	y-axis, neither in contact with y-axis	B1	Independent
(b)	$-1.4 \le x \le -1.1$ and $3.1 \le x \le 3.4$	B1,B1	i.s.w. 3rd answer if curve cuts $y = 1$ again
(c) (i)	Correct ruled tangent at $x = 2$ or $x = -2$	M1	Long enough to be able to find gradient
	Evidence of rise/run	M1	Dependent – check their graph against
			gradient of 1 – must be correct side of 1
			No tangent drawn M0M0
	0.8 to 1.2	A1	
(ii)	0.8 to 1.2 inc. or same answer as (i) ft	B1 ft	
(d) (i)	Correct ruled line to cut curve for all	B 1	Within $\frac{1}{2}$ square of $(-1, 1)$ and $(1, -1)$
	possible intersections (at least 2)		
(ii)	-1.3 to -1.05, 1.05 to 1.3 inclusive	B1, B1	i.s.w. any extra answers
(e)	$y = kx$ with $k \ge \frac{1}{2}$ o.e. or $x = 0$	B2	If B0 , allow SC1 for $y = kx$ with $k < \frac{1}{2}$ or
			for <i>y</i> -axis stated
			[19]

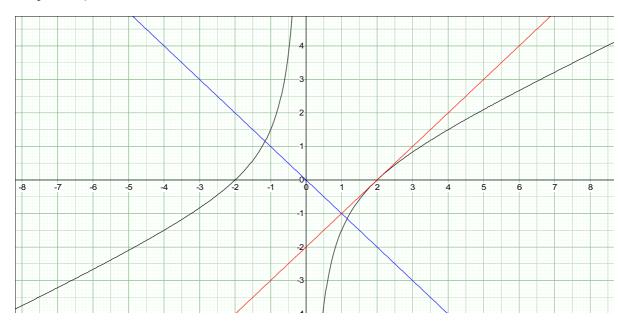
Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0580, 0581	04

6 (a) (i)	$0.5[(x+6)+(x+2)]\times(x+1) (=40)$ or	M1A1	M1 for any algebraic use of half base ×
	better		height
			(Brackets may be implied later)
	0.5(2x+8)(x+1) = 40 o.e.		May be first line
	$0.5(2x^2 + 10x + 8) (= 40)$ o.e. $x^2 + 5x + 4 = 40$ o.e.		If this first line, then M0
	$x^2 + 5x + 4 = 40$ o.e.	E1	Dependent on M1A1 . Fully established –
	$x^2 + 5x - 36 = 0$		no errors throughout and at least 2 steps,
			one with 40 or 80, after first line
(ii)	-9, 4	B1,B1	If B0, SC1 for +9 and -4
(iii)	$(BC^2 =)$ (their $x + 1)^2 + (their x + 2)^2$	M1	Their <i>x</i> must be positive
, ,	(BC =) 7.81(0) c.a.o. www2	A1	Ignore any extra solutions
(h) (i)		E1	Must be freetiened form
(b) (i)	$9\frac{5}{12}$ or $\frac{108+5}{12}$ or $\frac{9\times12+5}{12}$ or $\frac{565}{60}$	E1	Must be fractional form
			Condone $113/12 \times 60 = 565$; $9 \times 60 + 25 = 565$
	or $\frac{9\times60+25}{60}$ seen		
	60		Not for decimals
(ii)	$\frac{3y+2}{3} \text{ or } \frac{y+4}{2} \qquad \text{o.e.}$	B1	
(11)	${3}$ or ${2}$ o.e.	Di	
	2(3y+2) + 3(y+4)	B1	6y + 4 + 3y + 12
	$\frac{2(3y+2)}{6} + \frac{3(y+4)}{6} \text{ o.e.}$	DI	or $\frac{6y+4}{6} + \frac{3y+12}{6}$ o.e.
(iii)	2(9y+16) 113	M1	o.e. means with common denominator or
(111)	$\frac{2(9y+16)}{12} = \frac{113}{12}$ o.e.	1411	better
	y = 4.5 c.a.o. www2	A1	(Trial and error scores 2 or 0.)
(iv)	(Total dist =) $(3 \times \text{their } y) + 2 + (\text{their } y) + 4$	M1	(= 24)
(21)	o.e.	1,11	(- 1)
	(Average speed =) $\frac{\text{their } 24}{9\frac{5}{12}}$ o.e.	M1	(dependent) Must be km divided by hours
	/ 12		o.e. for full method
	2.55 (km/h) (2.548 – 2.549) c.a.o. www 3	A1	Accept fractions in range
			[15]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0580, 0581	04

7 (a)	$250x^2 = 4840$ o.e.	M1	Allow M1 for $250 \times 4.4^2 = 4840$
	$x^2 = 19.36$ or $(x =) \sqrt{4840 \div 250}$ $(= 4.4)$	E1	Then E1 for $250 \times 19.36 = 4840$
(b)	42.6 (kg) cao (42.592 or 42.59)	B2	SC1 for figures 426 or 4259
(c)	26.4 (cm) c.a.o.	B2	If B0 , M1 for any of following $88 \div 4.4 = 20$ and $120 \div 20 = 6$ (accept 6 bars high o.e.) or $88h = 4.4^2 \times 120$ or $250 \times 88 \times h = 120 \times 4840$
(d) (i)	4840 ÷ 4200 (implied by 1.15(2))	M1	$4200 \times \frac{4}{3} \pi r^3 = 4840$
	$\div \frac{4}{3}\pi$ (implied by 0.274 to 0.276)	M1	$(r^3 =) 4840 \div (4200 \times \frac{4}{3}\pi)$
	$\sqrt[3]{}$ (seen or implied by correct answer to more than 2 dp)	M1 dep	³ √ Third M dependent on M1M1
	0.649 - 0.651	A1	Must be 3dp or better
(ii)	5.31 (5.306 – 5.31) (cm ²)	B1	
(iii)	$\frac{4200 \times \text{their (ii)}}{2 \times 4.4^2 + 4 \times 4.4 \times 250} \times 100$ 501.9 – 503 (%) c.a.o. www4	M3	If M0, M1 for 4200 × their (ii) (22299) and M1 (independent) for correct method for surface area of solid cuboid (4438.72)
8			Throughout the question ratios score zero. If using decimals, 2 s.f. correct answers to parts (c) and (d) – penalty of 1 once Use of words e.g. 1 in 400 or 1 out of 400, Correct answers – penalty of one For method marks only accept probabilities <i>p</i> and <i>q</i> between 0 and 1
(a)	$p = \frac{1}{20}$, $q = \frac{19}{20}$ o.e.	B1	Could be on diagram
(b) (i)	$\frac{1}{400}$ o.e. c.a.o.	B2	0.0025 allow M1 for $(\text{their } p)^2$ o.e.
(ii)	$\frac{38}{400}$ o.e. c.a.o.	B2	0.095 allow M1 for 2 (their p)(their q) o.e.
(c)	$\frac{38}{8000}$ o.e. c.a.o.	B2	0.00475 allow M1 for $2(\text{their }p)^2$ (their $q)$ o.e. including their (ii) × their p
(d)	their (b)(i) + their (c) $\frac{58}{8000}$ o.e. c.a.o.	M1 A1	0.00725
(e)	their (d) $\times 1000 = 7.25$ o.e. ft	B1 ft	Accept 7 or 8 or an equivalent integer ft [10]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0580, 0581	04


9 (a) (i)	174 to 174.25 (cm) c.a.o.	B1	
(ii)	167 (cm) c.a.o.	B1	
(iii)	12 (cm) c.a.o.	B1	
(iv)	37 c.a.o.	B2	If B0 , B1 for 63 seen in working space
(b) (i)	10, 25	B1	
(ii)	155, 165, 175, 185	M1	s.o.i. allow 1 slip
	(their $10 \times 155 + \text{their } 25 \times 165 + 47 \times 175$	M1	Use of Σfx where the x's are in/on their
	+ 18 × 185)		intervals (allow one more slip) (17 230)
	÷ 100	M1	(dependent on second M) ÷ 100
	172 or 172.3 (cm) c.a.o. www 4	A1	[10]

	2	T	
10 (a) (i)	-2,	B1	
(ii)	26,	B1	
(iii)	$\frac{1}{8}$ o.e.	B1	
(b)	$\frac{y+1}{2}(=x)$	M1	If switch x and y first then M1 for $x = 2y - 1$ or
	$(f^{-1}(x) =) \frac{x+1}{2}$ o.e. www2	A1	If use a diagram/chart then M1 for any evidence of +1 then result ÷ 2
(c)	$z = x^2 + 1$		
	$z - 1 = x^2$	M1	Correct rearrangement at any stage for x or x^2 .
	$(x =) \sqrt{z-1}$ www2	M1	Correct sq root at any stage
			Ignore $+$, $-$ or \pm in front of $\sqrt{}$
(d)	$(2x-1)^2+1$	M1	
	$=4x^{2}-4x+2 \text{ or } 2(2x^{2}-2x+1)$ www 2	A1	Final answer but condone one minor factorising slip if first answer seen
(e)	9	B1	
(f)	$2(2x-1) + x^2 + 1$ (= 0) or better	B1	
	$2(2x-1) + x^{2} + 1 (= 0) \text{ or better}$ $(x^{2} + 4x - 1 = 0)$ $(x =) \frac{-4 \pm \sqrt{4^{2} - 4(1)(-1)}}{2} \qquad \text{ft}$	M1	$\sqrt{4^2 - 4(1)(-1)}$ or better seen
	$(x =) \frac{1 + 2\sqrt{1 + 1(1)(1)}}{2 \times 1} \qquad \mathbf{ft}$	M1	If in form $\frac{p + or - \sqrt{q}}{r}$ for -4 and 2×1
	(x =) -4.24, 0.24 c.a.o. www 4 (final answers)	A1,A1	or better Ft their 1, 4 and -1 from quadratic equation seen After A0A0, SC1 for -4.2 or -4.235 or -4.236 and 0.2 or 0.235 or 0.236 The SC1's www imply the M marks
(g) (i)	Straight line with positive gradient and	L1	
(ii)	negative y-intercept		
	U-shape Parabola	C1	
	vertex on positive <i>y</i> -axis	V1	Dependent [18]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2009	0580, 0581	04

11 (a)	15, 21, 28, 36	B2	B1 for 3 correct
(b) (i)	10 + 15 = 25, 15 + 21 = 36 etc	B1	Any two complete and correct statements
(ii)	Square	B1	
(c) (i)	2	B1	
(ii)	$\frac{4\times 5}{2} = 10 \text{o.e.}$	E1	
(iii)	16 290 c.a.o.	B1	
(d) (i)	$\frac{(n+1)(n+2)}{2}$ or $\frac{n^2+3n+2}{2}$ seen	M1	Denominator could be their <i>k</i> May be implied by next line
	$\frac{n(n+1)}{2} + \frac{(n+1)(n+2)}{2}$ or $\frac{n^2+n}{2} + \frac{n^2+3n+2}{2}$	M1	This line must be seen and at least one more step, without any error, to gain the E
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		mark
	$\frac{(n+1)(2n+2)}{2}$ $n^2 + 2n + 1$		
	$\frac{2(n+1)(n+1)}{2} = (n+1)^2$	E1	Dependent on M1M1 . Fully established – no errors
(ii)	1711 and 1770 final answers c.a.o.	B2	SC1 for 59 or 58 or 1711 or 1770 seen [12]

Graph for Question 5

