MARK SCHEME for the May/June 2015 series

0580 MATHEMATICS

0580/42

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	42

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case

nfww not from wrong working

soi seen or implied

Q	uestion	Answer	Mark	Part marks
1	(a)	1848 final answer	2	M1 for $1650 \times \left(1 + \frac{12}{100}\right)$ oe
	(b) (i)	1750	2	M1 for $\frac{500}{9-5}$ [×5] or [×9] or any equation which
				would lead to $4x = 500$ or $4x = 2500$ or $4x = 4500$ or $4x = 7000$ when simplified
	(ii)	$64\frac{2}{7}$ or 64.3 or 64.28 to 64.29	1	
	(c) (i)	33 : 20 oe	2	B1 for 33 : 6 or 20 : 6 or 5.5 oe seen or 3.33oe seen or M1 for two ratios with a common number of children implied by $20k$ and $33k$ seen, $k > 0$
	(ii)	236	3	M2 for $\frac{24}{2} \times 11 + \frac{24}{3} \times 10$ oe or $((3 \times 11) + (2 \times 10)) \times 24 \div 6$
				or $\frac{6}{6+20+33} \times x = 24$
				or M1 for $\frac{24}{2} \times 11$ or $\frac{24}{2} \times 13$ soi
				or $\frac{24}{3} \times 10$ or $\frac{24}{3} \times 13$ soi oe or $24 \div 6$ soi
	(d)	17[.00]	3	M2 for 20.40 ÷ $\left(1 + \frac{20}{100}\right)$ oe
				or M1 for $(100 + 20)$ % oe associated with 20.40 seen

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	42

Qu	estion	Answer	Mark	Part marks
2	(a) (i)	66	1	
	(ii)	24	1FT	FT 90 – <i>their</i> (a)(i)
	(iii)	66	2FT	FT 90 – <i>their</i> (a)(ii) M1 for [<i>BOD</i> =] 180 – 48 or 180 – 2 × <i>their</i> (a)(ii)
	(iv)	114	1FT	FT 180 – <i>their</i> (a)(iii)
	(b)	83.6 or 83.60[]	2	M1 for $\frac{1}{2} \times 15 \times 15 \times \sin(180 - 48)$ oe or $\frac{1}{2} \times 15 \times 15 \times \sin(180 - 2 \times their (a)(ii))$ oe
	(c)	Opposite angles add up to 180 OR Angle in a semicircle [=90]	1	

 Page 4
 Mark Scheme
 Syllabus
 Paper

 Cambridge IGCSE – May/June 2015
 0580
 42

Question		Answer	Mark	Part marks
3	(a) (i)	$\frac{600}{x+20}$ final answer	1	
	(ii)	$\frac{600}{x}$ - their $\frac{600}{x+20}$ = 1.5 oe	M1	
		600(x+20) - 600x = 1.5x(x+20) or $\frac{600(x+20) - 600x}{x(x+20)} [= their 1.5]$	M1	Correctly clearing, or correctly collecting into a single fraction, two fractions both with algebraic denominators, one being $\frac{600}{x}$
		$600x + 12000 - 600x = 1.5x^2 + 30x$ $[0 = 1.5x^2 + 30x - 12000]$	M1	Dep on previous M1 , correctly multiplying <i>their</i> brackets and clearing fraction
		$0 = x^2 + 20x - 8000$	A1	With no errors or omissions seen, dep on M3
	(b)	-100, 80	3	M2 for $(x + 100)(x - 80)$ or M1 for $(x + a)(x + b)$ where $ab = -8000$ or $a + b = 20$ OR B1 for $\sqrt{20^2 - 4 \times 1 \times (-8000)}$ or better and
	(c)	6.67 or 6.666 to 6.667 oe	2FT	B1 for $\frac{-20 + \sqrt{q}}{2 \times 1}$ or $\frac{-20 - \sqrt{q}}{2 \times 1}$ FT $\frac{12}{2(their 80) + 20} \times 100$ correctly evaluated to at least 3 sf M1 for choosing and using <i>their</i> positive root

Page 5Mark SchemeSyllabusPaperCambridge IGCSE – May/June 2015058042

Question		Answer	Mark	Part marks
4	(a) (i)	9π final answer	2	M1 for $\frac{135}{360} \times 2 \times \pi \times 12$ oe
	(ii)	(a) 4.5[0] or 4.497 to 4.504	2FT	FT <i>their</i> 9 ÷ 2
				M1 for $2\pi r = their \ 9\pi$ or $12\pi r = \frac{135}{360}\pi 12^2$ oe
		(b) 11.1 or 11.12[]	3FT	FT their $\sqrt{12^2 - their 4.5^2}$ to 3 sf or better (<i>their</i> 4.5 < 12)
				M2 for $\sqrt{12^2 - their 4.5^2}$ (their 4.5 < 12)
				or
				M1 for $12^2 = h^2 + their 4.5^2$ oe (their 4.5 < 12)
	(b) (i)	75 nfww	3	M2 for $l = \frac{35}{7} \times 15$ or $x = \frac{35}{7} \times 8$ oe or
				for 40 seen nfww
				or correct trig or Pythagoras' method leading to value rounding to 40.0
				M1 for $\frac{l}{15} = \frac{35}{7}$ oe or $\frac{x}{8} = \frac{35}{7}$ oe
				or $\frac{l-35}{8} = \frac{35}{7}$ oe or $\frac{l-35}{l} = \frac{8}{15}$ oe
	(ii)	2730 or 2730.0 to 2730.4 nfww	3	M2 dep for $\pi \times 15 \times their 75 - \pi \times 8 \times (their 75 - 35) [+ \pi \times 8^2]$ dep their 75 > 35
				or 805π [2527.7 to 2530] nfww
				or 869 π [2728.6 to 2731.2] nfww
				or $\mathbf{M1}$ for $\pi \times 15 \times their 75$ or 1125π
				[3532.5 to 3535.8] nfww seen
				or $\pi \times 8 \times (their 75 - 35)$ or 320 π [1004.8 to 1005.8] nfww seen
				or $\pi \times 8^2$ or 64π [200.9 to 201.2] nfww seen
	(c) (i)	16 <i>r</i> ³	2	M1 for $[M=] k \times r^3$ or 1458= $k \times 4.5^3$ oe
				or $\frac{M}{1458} = \frac{r^3}{4.5^3}$ oe
				After M0, SC1 for 16 seen
	(ii)	8 : 27 oe	1	Must be numeric, e.g. 128:432

Pa	age 6	Mark Scheme				Paper
		Cambridge IGCSE –	May/Ju	ine 2015	0580	42
-						
5	(a)	2 and 7	2	B1 for each value		
	(b)	Complete correct curve	5	 B3 FT for <i>their</i> 9 or 10 points or B2 FT for <i>their</i> 7 or 8 points or B1 FT for <i>their</i> 5 or 6 points and B1 independent for one branch on each side of the <i>y</i>-axis and not touching the <i>y</i>-axis SC4 for correct curve with branches joined 		
	(c)	Correct tangent and $-13 \leq \text{grad} \leq -8$	3	B2 for close attempt at tangent at $x = 1$ and answer in range OR B1 for ruled tangent at $x = 1$, no daylight at $x = 1$ Consider point of contact as midpoint betwee two vertices of daylight, the midpoint must b between $x = 0.8$ and 1.2 and M1 (dep on B1 or close attempt at tangen [at any point] for $\frac{rise}{run}$		
	(d) (i)	5 to 6	1			
	(ii)	2 to 2.35 and -2.55 to -2.35	2FT	FT <i>their k</i> B1FT for each correct so	lution	
	(e)	[a =] -5 [b =] -1 [c =] 12	3	B2 for two correct values or for $x^3 - 5x^2 - x + 12$ [= or M1 for $x^2 - 2x + \frac{12}{x} = 3x$	0] oe + 1	

Pa	ge 7	Mark Scheme			Syllabus	Paper
		Cambridge IGCSE –	May/Ju	ine 2015	0580	42
6	(a)	$95.5^2 + 83.1^2 - 2 \times 95.5 \times 83.1 \times \cos 101$	M2	M1 for $\cos 101 = \frac{95.5^2 + 2000}{2 \times 900}$	$+83.1^2 - AB^2$ $+95.5 \times 83.1$	-
		138.0	A2	A1 for 19054.[] also in	plies M2	
	(b)	110 or 109.7 to 109.8	4	B3 for 36.2 or 36.20 to 36	5.24[1]	
				or M2 for $[\sin =] \frac{83.1 \times s}{138[.5]}$	$\frac{in 101}{0]}$ oe	
				or M1 for correct implicit	version	
				After M0, SC1 for angle	ABC = 42.76	to 42.8
	(c)	18.8 or 18.79[]	2	M1 for 46.2 × cos(45 + 2 After M0 , SC1 for answe 42.21	1) oe r 42.2 or 42.2	20 to
7	(a) (i	316	4	M1 for 100, 250, 325, 37:	5, 450 soi	
				M1 for Σfm with <i>m</i> 's in ir boundaries [15800]	ntervals inclu	ding
				M1 (dep on 2nd M1) for	their $\Sigma fm \div 5$	0
	(ii	Three correct blocks with heights 0.09, 0.36, 0.24 with correct widths and no gaps	3	B2 for two correct blocks orB1 for one correct block of frequency densities soi	or three corre	ect
	(b)	Students have a greater range of estimates oe	B1			
		[On average] adults estimated a greater mass oe	B1			

Ρ	age 8	Mark Scheme				Paper
		Cambridge IGCSE –	May/Ju	ine 2015	0580	42
		1	I			
8	(a) (i)	$x \ge 100$ final answer	1			
	(ii)	$y \ge 120$ final answer	1			
	(iii)	$x + y \le 300$ final answer	1			
	(iv)	$40x + 80y \ge 16000$ or $0.4x + 0.8y \ge 160$	M1	with no errors seen but isw substitution of values after correct inequality		
	(b)	x = 100 ruled	B 1			
		y = 120 ruled	B 1			
		x + y = 300 ruled	B 1			
		x + 2y = 400 ruled	B2	Allow B1 for line with ne passing through (400, 0) c extended	for line with negative gradient bugh $(400, 0)$ or $(0, 200)$ when	
		Correct shading	B1	Dep on all previous marks Condone any clear indicat region	s earned tion of the re	quired
	(c)	200	2	M1 for $x = 100$ and $y = 20$ or for $x \times 0.4 + y \times 0.8$ oe is an integer point in <i>their</i>	00 selected evaluated w [unshaded]	here (<i>x</i> , <i>y</i>) region

Pa	age 9	Mark Scheme				Syllabus	Paper
		Cambridge IGCSE – May/June 2015			0580	42	
9	(a)	$4x - 3x^2$ or $x(4 - 3x)$	nfww final answer	3	B2 for $3x^2 - 6x - 6x^2 + 10$ or M1 for $3x^2 - 6x$ or $-6x$	dx $dx^2 + 10x$	
	(b) (i)	(2+y)(3w-2x) oe	final answer	2	M1 for $3w(2 + y) - 2x(2 + y) = 2x(2 + y) = 2x(3w - 2x) + y(3w - 2x)$	+ y))	
	(ii)	(2x+5y)(2x-5y)	final answer	2	M1 for $(2x \pm 5y)(2x \pm 5y)$ or $(2x + ky)(2x - ky)$ or $(kx + 5y)(kx - 5y)$, $k \neq 0$ or $(2x + 5)(2x - 5)$ or $(2 + 5y)(2 - 5y)$		
	(c)	$\frac{27x^6}{64}$	final answer	2	B1 for 2 [out of 3] element form in final answer or final answer contains 2 or $\frac{3x^2}{4}$ seen or $\frac{729x^{12}}{4096}$ set	nts correct in 7 and 64 and en	the right I x ^{[–]6}
	(d) (i)	2 <i>n</i> is even and subtration an odd number	cting 1 gives	1	Must interpret the $2n$ as each then the -1 oe	ven or not oc	ld and
	(ii)	2n+1 oe final answ	er	1			
	(iii)	their $(2n+1)^2 - (2n-1)^2$	- 1) ²	M1	Could use alternate correct consecutive odd numbers accuracy marks if correct. Could reverse the algebra <i>their</i> $(2n - 1)^2 - (2n + 1)^2$ Allow method and accura	ct expression Allow meth ic terms leading to -8 cy marks if o	s for nod and Sn. correct.
		$4n^2 + 4n + 1 - 4n^2 + 4n^2 $	4 <i>n</i> – 1	M1	Dep on M1 for expanding expressions. If seen alone and complet implies previous M1 Allow $4n^2 + 4n + 1 - (4n^2)$	g brackets in ely correct tl $(2 - 4n + 1)$	<i>their</i> nen
		8 <i>n</i>		A1	With no errors seen. After 0 scored, allow SC1 evaluated numeric examp consecutive odd squares i	l for two cor les of subtra sw	rectly cting

Pag	ge 10	Mark Scheme			Syllabus	Paper
		Cambridge IGCSE –	May/Ju	ine 2015	0580	42
10	(a) (i)	9.43[]	2	M1 for $5^2 + ([-]8)^2$ or bet	ter	
	(ii)	(-3, 5)	1			
	(b) (i)	(a) $\frac{1}{2}$ (a + b) or $\frac{1}{2}$ a + $\frac{1}{2}$ b	2	M1 for $\mathbf{a} + \frac{1}{2}AB$ oe, e.g a	$\mathbf{a} + AM$, OA	$+\frac{1}{2}AB$
		(b) $\frac{1}{4}$ (a + b) or $\frac{1}{4}$ a + $\frac{1}{4}$ b	1FT	FT $\frac{1}{2}$ their (b)(i)(a) in terms of a and/or b in simplest form		
		(c) $\frac{1}{4}$ (b - 3 a) or $\frac{1}{4}$ b - $\frac{3}{4}$ a	2	M1 for -a + <i>their</i> (b)(i)(b) or any corr	ect route
	(ii)	3 : 4 final answer	3	M1 for $[AN =] -a + \frac{1}{3}b$		
	(c) (i)	Triangle drawn at $(-3, -3), (-6, -3), (-6, -4\frac{1}{2})$	3	A1 for $\frac{1}{4}$: $\frac{1}{3}$ oe or $AN = \frac{1}{4}$ or $3k$ to $4k$ After 0 scored SC1 for fin B2 for 2 vertices correct i co-ordinates soi in workir or B1 for 1 vertex in triangle of correct size and oriental position or M1 for correct set up e.g.	$\frac{1}{3}(-3\mathbf{a} + \mathbf{b})$ nal answer 4 n triangle or ng e correct soi o tion but wro	: 3 3 correct or triangle ng
	(ii)	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	2	$\begin{pmatrix} -1.5 & 0 \\ 0 & -1.5 \end{pmatrix} \begin{pmatrix} 2 & 4 & 4 \\ 2 & 2 & 3 \end{pmatrix}$ SC1 for 1 correct row or or or for $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	column	

Page 11	Mark Scheme			Syllabus	Paper
	Cambridge IGCSE – May/June 2015			0580	42
11 (a)	$\frac{38}{56}$ or $\frac{19}{28}$ oe	4	[0.679 or 0.6785 to 0.6786]		
			M3 for $\frac{4}{8} \times \frac{4}{7} + \frac{3}{8} \times \frac{5}{7} + \frac{1}{8} [\times \frac{7}{7}]$ oe		
			or M2 for sum of two of the products isw 4 4 3 5 1 7 7		
			or $\frac{\overline{8} \times \overline{7}}{4}, \frac{\overline{8} \times \overline{7}}{8}$, <u>-</u> [× <u>-</u>] c	e
			M1 for $\frac{1}{8} \times \frac{1}{7}$ or $\frac{3}{8} \times \frac{3}{7}$ or $\frac{1}{8} \times \frac{7}{7}$ isw	- oe isw	
			• / After 0 scored, SC1 for a	nswer of $\frac{38}{64}$	oe
(b)	$\frac{60}{336}$ or $\frac{5}{28}$ oe	2	M1 for $\frac{5}{8} \times \frac{4}{7} \times \frac{3}{6}$		
			or $\left(\frac{4}{8} \times \frac{3}{7} \times \frac{2}{6}\right) + 3\left(\frac{4}{8} \times \frac{1}{7}\right)$	$\times \frac{3}{6}$ oe	