

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the November 2003 question papers

0580/0581 MATHEMATICS

0580/01, 0581/01 Paper 1 (Core), maximum raw mark 56

0580/02, 0581/02 Paper 2 (Extended), maximum raw mark 70

0580/03, 0581/03 Paper 3 (Core), maximum raw mark 104

0580/04, 0581/04 Paper 4 (Extended), maximum raw mark 130

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the Report on the Examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.

Grade thresholds taken for Syllabus 0580/0581 (Mathematics) in the November 2003 examination.

	maximum	minimum mark required for grade:			
	mark available	А	С	E	F
Component 1	56	-	46	35	28
Component 2	70	51	28	16	-
Component 3	104	-	68	44	38
Component 4	130	101	59	36	-

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.

Notes	Mark Scheme	Syllabus
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581

TYPES OF MARK

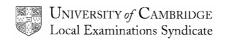
Most of the marks (those without prefixes, and 'B' marks) are given for accurate results, drawings or statements.

- **M** marks are given for a correct method.
- **B** marks are given for a correct statement or step.
- A marks are given for an accurate answer following a correct method.

ABBREVIATIONS

a.r.t.	Anything rounding to
b.o.d.	Benefit of the doubt has been given to the candidate
c.a.o.	Correct answer only (i.e. no 'follow through')
e.e.o.	Each error or omission
o.e.	Or equivalent
SC	Special case
s.o.i.	Seen or implied
WW	Without working
www	Without wrong working
$\sqrt{}$	Work followed through after an error: no further error made
√-	Work followed through and another error found

INTERNATIONAL GCSE


MARK SCHEME

MAXIMUM MARK: 56

SYLLABUS/COMPONENT: 0580/01, 0581/01

MATHEMATICS

Paper 1 (Core)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	1

	stion nber	Mark	Scheme I	Details	Part Mark
1		400 (grams)	1		1
2		(\$)2.7(0)	2	M1 for $\frac{15}{100} \times 18$ o.e.	2
				SC1 for $\frac{85}{100} \times 18 = 15.3$	
3	(a)	$\frac{2}{5}$	1	Accept equivalent fractions, decimals, percentages (with sign)	2
	(b)	0	1	accept $\frac{0}{5}$, $\frac{0}{k}$ do not accept, none, not but condone it with 0	
4	(a)	126°	1	There is a second of the secon	
	(b)	40(%)	2	M1 for $\frac{144}{360} \times 100$ o.e.	3
5		1.71(01)	2	M1 for 5 sin 20° or 5 cos70° or 1.7	2
6		6 or $\frac{6}{1}$	2	M1 for $\frac{60}{10}$, $\frac{1}{\frac{1}{6}}$, $\frac{1}{\frac{10}{60}}$	2
7		144°	3	M2 for $\frac{(2 \times 10 - 4) \times 90}{10}$ or	3
				$\frac{(10-2)\times180}{10} \text{ or} $ $180 - \frac{360}{10}.$	
				After 0, SC1 for answer 36°	
8		1250 ≤ r.l. < 1350	1 + 1	SC1 if reversed	2
9	(a)	10x ² – 15xy	2	B1 for one term correct	
	(b)	6x (x + 2)	2	M1 for $6(x^2 + 2x)$ or $x(6x + 12)$ or $2(3x^2 + 6x)$ or $2x(3x + 6)$ or $2x(2x^2 + 4x)$ or $2x(2x + 4)$	4
10	(a)	87°	1		
	(b)	28°	1		1
	(c)	62° √	1	f.t. is (90 – y)	3

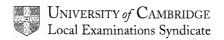
Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	1

11			1	Lines may be freehand but must go completely through the shape	
			1		
		Any line through the centre	1		3
12		x = 4, y = 12	3	M1 for attempting to eliminate one unknown by a correct method A1 for one correct value (x or y)	3
13	(a)	(i) 2.4096	1		
		(ii) 2.41 √	1	f.t. from (i)	4
	(b)	19.3 or 19.32(16)	2	B1 for 2.68 seen or implied by 19.2	-
14	(a)	Monday, Tuesday and Saturday	1	All three and no extras	
	(b)	-20	3	B1 for -14 seen + M1 for (their -14) ÷ 7	4
15	(a)	(i) 0.28	1		
		(ii) 0.275	1		
		(iii) 0.2857 or 0.286	1		4
	(b)	$\frac{275}{1000}$, 28%, $\frac{2}{7}$ or equivalent $\sqrt{}$	1	f.t. from (a)	
16	(a)	4.58(m)	2	M1 for $\sqrt{5^2 - 2^2}$ s.o.i. e.g. $\sqrt{21}$	4
	(b)	66.4o or 66.3o – 66.45o	2	M1 for $\cos^{-1} \frac{2}{5}$ o.e. incl $\sqrt{}$	+

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	1

17	(a)	3	1	10 ⁸ etc. penalise once only	
	(b)	-4	1	accept -04	1
	(c)	0	1		4
	(d)	-2	1		
18	(a)	0.4 or 2.6	2	B1 for one correct SC1 if (0.4,0) (2.6,0)	
	(b)	(i) 0	1		
		(ii) Correct line from $x = -1$ to $x = 4$	1	Must be ruled	6
	(c)	(0,1), (4,5) √	2	B1 for one correct f.t. from (b) (ii)	-

INTERNATIONAL GCSE


MARK SCHEME

MAXIMUM MARK: 70

SYLLABUS/COMPONENT: 0580/02, 0581/02

MATHEMATICS

Paper 2 (Extended)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	2

* indicates that it is necessary to look in the working following a wrong answer

1	0.5 0.7	1	
	0.5 or $\frac{1}{2}$ c.a.o.		
2	(-)4504	1	Allow (-)4500
3	(a) 121 (b) (n + 1) ²	1	Allow 49, 64, 81, 100, 121 n ² + 2n + 1
4	3/2500, 1/8, 0.00126	2*	M1 for all 3 evaluated as decimals (or fractions or percentages or stand. form) SC1 reversed order
5	(a) -1, $\sqrt{36}$ (b) $\sqrt{2}$, $\sqrt{30}$	1 1	Allow -1, ± 6 SC1 (a) -1 and (b) $\sqrt{36}$, $\sqrt{2}$, $\sqrt{30}$
6	I = mr/5	2*	M1 for $\frac{240 \times r \times m}{100 \text{ (x12)}}$ o.e.
7	66.7	2	M1 for $\frac{2.4}{3.6} \times 100$ o.e.
8	(a) -1 (b) 5k	1	
9	(a) 32000 (b) 254 <u>50</u> 255 <u>50</u>	1 1, 1	SC1 both correct and reversed
10	11.5(2)	3*	M1 F = kv^2 M1 k = $18/40^2$ or better
11	(a) 3110	2*	M1 for 1936 ÷ 0.623 or 1936 x 1.61 Allow 3107.54, 3107.5, 3108 or 3107.3 SC1 3107
	(b) 322	1 √	1000000 ÷ (a)
12	(a) 45, 225 (b) 157.5	1, 1 1	Allow 158
13	(a) 5.5 or 5½ (b) 21.5	1 2*	M1 172 ÷ 8
14	$(a) \frac{x+3}{x(x+1)}$	3*	M1 3(x + 1) - 2x M1 denominator x(x + 1)
	(b) -3	1 √	

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	2

				7
15	(a)	angle bisector of angle P	2*	M1 correct construction method A1±1°
	/b\	radius from Tor II	2*	SC1 for accurate line but no arcs
	(D)	radius from T or U		M1 radius drawn, meets (a) and O labelled. A1±1°
				labelled. AT ± 1
16	(a)	A(2,0) B(0,-6)	1, 1	SC1 correct and reversed
		6.32	2*	M1 (AB ²) = " $(0-2)$ " ² + " $(-6-0)$ " ² from
				(a)
	(c)	(1,-3)	1 √	
47	(-)	20	1	
17	(a) (b)		1 1	
	(c)		1	
		124	1	
	(e)		1 √	(b) – (c)
18		5.8 x 10 ⁸	1	
	(b)	98	2*	M1 figs 58 ÷ figs 59 or figs 9830508
	(c)	10200	2*	M1 figs 59 ÷ figs 58 x 10 ⁿ or $\frac{1}{(b)}$ x 10 ⁿ
				n = 3 or 6
				11 – 3 01 0
19	(a)	-6	2	M1 1 – 2(7/2)
	(h)	(i) 0.4	2	M1 $\frac{5x}{2}$ o.e., 2 - 4x = x or better
	(5)	(1) 0.4		2 0.0., 2 4x - x 01 botto1
		(ii) (0.4, 0.2)	1	
		2		
20	(a)	(i) $-\frac{2}{3}$ p + q	2*	M1 use of AQ = $\pm \frac{2}{3}$ p \pm q or AO + OQ
		(ii) $-\frac{3}{4}$ q + p	2*	M1 use of BQ = \pm ³ / ₄ q \pm p or BO + OP
	(b)	$^{1}/_{3}\mathbf{p} - ^{1}/_{2}\mathbf{q}$	2*	$M1 - \frac{1}{4}q + \frac{1}{3}BP$
	(5)	736 729	_	749 7351
21	(a)	60x + 80y ≤1200 seen	1	Allow $0.6x + 0.8y \le 12$
	(b)	$x \ge y$	1	
	(c)		1	
		line through (20,0) and (0,15)	2*	M1 intention A1 accurate
	(ام)	shading out or R labelled	1 1	Dep. on both lines Allow 20, 0 or 20 + 0
	(a)	20 c.a.o.	'	Allow 20, 0 01 20 + 0
	1		1	
		Т	otal 70	

TOTAL MARKS 70

INTERNATIONAL GCSE

MARK SCHEME

MAXIMUM MARK: 104

SYLLABUS/COMPONENT: 0580/03, 0581/03

MATHEMATICS

Paper 3 (Core)

Page 1	Mark Scheme	Syllabus	Paper
	MATHEMATICS – NOVEMBER 2003	0580/0581	3

\sim	اال	stion	Mark Scheme	Part	Notes	Question
	uml		Wark Concinc	Marks		Total
1	a)		24	1		
	b)		25 or 5 ²	1		
	c)		27 or 3 ³	1		
	d)		23	1		
	,		29	1		
	e)		26	1	condone 6, 26 or 6 x 26	
	f)		28 cao	1		
	g)		21 and 27	1	condone 21 x 27	8
2	a)	i)	1300 or 1 pm	1		
		ii)	1030	1	allow 10.30, 10:30 etc	
		iii)	9	2	B1 for either 24 or 33 seen	
					or M1 for 2 correct horizontal lines	
					drawn or 24 and 33 marked on axis	
	b)	i)	4.35, 8.7(0)	2	B1 for one correct	
		ii)	Correct straight line	2	P1 for (5, 4.2 to 4.4) or (10, 8.6 to	
			(through (10, 8.6 to 8.8)		8.8)	
		iii)	9.2(0) (± 0.1)	1	no ft.	
		iv)	575 (± 5)	1	no ft.	10
						<u>18</u>
3	a)		6000	2	M1 for 25 x 30 x 8	
	b)	i)	art 4400	3	M2 for π x 10 ² x 14	
					or SC1 for $\pi \times 5^2 \times 14$	
		ii)	art 10400	1 √	ft their a + bi	
		iii)	art 13.9	3 √	ft for (their bii) ÷ (25 x 30)	
		,			M2 for (<i>their bii</i>) ÷ (25 x 30) oe	
					or M1 for (their bi) ÷ (25 x 30)	9
4	a)		4, 7, 6, 4, 4, 2, 3	2	SC1 for 5 or 6 correct or 7 correct	
	,				tallies	
	b)		1 cao	1		
	c)		2 cao	2	M1 for attempt at ranking list seen	
	d)		2.5 cao	2	M1 their $\sum f(x) \div \sum f$ imp by 2.5	
	,		_			
	e)	:\	7	1 1	seen	
	e)	1)	0.23(3) or $\frac{7}{30}$	1 √	allow 23% ft from their table	
		::\	30	4 /		
		ii)	0.3 or $\frac{3}{10}$ or $\frac{9}{30}$	1 √	ft from their table	
	C \			4 1	### ## ## ## ## ## ## ## ## ## ## ## ##	40
	f)		40	1 √	ft their table x 10. Allow 40/300	10
_						<u>19</u>
5	a)		6	1		
		.,	<u>-4</u>	1	11 16 1 84 4 6 "	
	b)	I)	Rotation	M1	Half turn M1 AI , –1 for "symmetry"	
			through 180°	A1		
			about (2.5, 6) o.e.	A1	allow correct description of point	
		ii)	Enlargement	B1		
			s.f. 3	B1	accept scale 3, x3 etc	
			centre (1,7)	B1	accept'B' for (1,7)	
	c)	i)	3 cao	1	ignore units	
		ii)	1 : 9 cao	2	SC1 for 27 seen	
				_	M1 for correct answer nlt	
	d)		$\frac{-2}{3}, \frac{-6}{9}, -0.66$ or better	2	SC1 for $\frac{2}{3}$ oe or $-k$	
			3 9		3	13

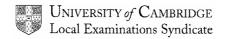
Page 2	Mark Scheme	Syllabus	Paper
	MATHEMATICS – NOVEMBER 2003	0580/0581	3

6	a)	i)	27	1		
Ť	<u> </u>	ii)	6	2	M1 for (39 - 3) ÷ 6	
		iii)		2		
		,	$\frac{P-3}{6}$ oe		M1 for P–3 seen or $\frac{P}{6} = \frac{6x+3}{6}$ oe	
					seen	
	b)	i)	4x + 3		M1 for $9x + 4 - 2x - (3x + 1)$ oe	
	.,	٠,			allow $9x + 4 - 2x - 3x + 1$ oe for M1	
					or SC1 for 4x or (+)3 in answer	
					space	
		ii)	10, 16 and 23	3	M1 for $9x + 4 = 49$ oe A1 for $x = 5$	10
						23
7	a)	i)	44	2	SC1 for 40 to 48	
	/	ii)	52	3	B1 for 6 or 8 or 12 or 9 or 21 or 28	
		,			or 32 or 112 seen	
					+M1 for adding 6 rectangles o.e.	
		iii)	cuboid or rectangular	1	allow rectangular cuboid but not	
		,	prism	•	cube or cubical	
		iv)	52	1 √	ft from their aii (not strict ft)	
		v)	24	2	M1 for 2 x 3 x 4	
	b)		2(pq + qr + pr) oe as final		SC1 for pq or qr or pr seen or imp.	
	J)	'/	answer	_	for both parts. Other letters used	
			G.100001		consistently MR–1	
		ii)	pqr as final answer	2	M1 for pqr seen	13
0	a)	11)	12.5	3	M1 for 7.5 x 12 oe or 80/12 oe seen	10
O	a)		NB 4021 answer 12.5	3		
			working uses 75 and		+ M1 for $\frac{90-80}{80}$ x100 (explicit) or	
			800			
			800		$\frac{7.50 - 6.66}{6.66}$ x100 (explicit)	
					after M0 SC2 for <i>figs</i> 124 to 126	
					ww or SC1 for 112.5	
	b)		120 minutes	3	B1 for $\frac{2}{5}$ or 180 or $\frac{3}{5}$ x 300 seen	
					5 5 5	
					+ M1 for $\frac{2}{5}$ x 300 oe or 300-180	
					5	
	c)	i)	Accurate ± bisector of	2	SC1 if accurate without arcs or	
			AB, with arcs ±1°±1mm		incomplete line. Ignore extra lines	
			complete inside figure			
			Accurate bisector of <c< td=""><td>2</td><td>SC1 if accurate without arcs or</td><td></td></c<>	2	SC1 if accurate without arcs or	
			with arcs as above		incomplete line as above	
		ii)	correct area shaded	2 √	Areas marked as diagram	
		,	1		ft from clear intention to draw perp.	
			11/00		bisector and angle bisector	
			1			
			12			
						12
9	a)	i)	150 (km)	1		•
		ii)	15 000 000 oe (√)	2	MI for <i>their</i> a)i) x 100 x 1000	
		,			or SC1 for <i>their</i> a)i) x 10 ⁿ when n>0	
	b)	i)	1270 to 1320	2	M1 for their 8.6 x their 150 must	
	,	,			have some evidence for their 8.6	
		ii)	(0)45 to (0)48 oe	1		
		iii)	245 to 248	2	SC1 for any answer in the range	
		•			180 < x < 270	8
						20

Page 3	Mark Scheme	Syllabus	Paper
	MATHEMATICS – NOVEMBER 2003	0580/0581	3

10 a)	1 6 15 20 15 6 1	1		
	Sum 64	1	SC1 if 6 or 7 correct	
	1 7 21 35 35 21 7 1	2	SCI II o oi 7 correct	
	Sum 128	1		
b) i)	512 accept 29	2	SC1 for 256	
ii)	2 ⁿ	2	SC1 for 2 x 2 x 2 seen or description	
c)	165 330 462	1		11
	The first 6 numbers	1		
	repeated in reverse			
	order			
				<u>11</u>
			TOTAL	104

INTERNATIONAL GCSE


MARK SCHEME

MAXIMUM MARK: 130

SYLLABUS/COMPONENT: 0580/04, 0581/04

MATHEMATICS

Paper 4 (Extended)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	4

Marks in brackets are totals for questions or part questions.

1	(a)		144:96 <u>Final</u> answer 3:2 or 1.5:1 or 1:0.667	B1 B1	After B0 , allow SC1 for <u>reversed</u> "correct" final ans. www2
				(2)	
	(b)	(i)	32 (children)	B1	
		(ii)	54 (adults off)	B1	
		(iii)	110 (adults on)	B1	
		(iv)	26 (=x) w.w.w.	B1	
				(4)	
	(c)		$300 \times \frac{4}{thier(6+5+4)}$	M1	
			80 children	A1	www2
				(2)	
	(d)	(i)	Final Ans. 21 13 or (0)9 13 pm	B1	Condone hrs but hrs and minutes ⇒ BO
		(ii)	7 h 20 min (o.e) $\times \frac{10}{110} \left(\text{or} \times \frac{100}{110} \right)$	M1	Implied by 6 h 40 min or 400 min
			40 min	A1	www2
				(3)	
				(11)	
				(/	
2	(a)	(i)	1.8(02)	B1	Throughout (a)(i)(ii)(iii) NO misreads allowed.
2	(a)	(i) (ii)	1.8(02) $1.99^2 = \frac{80h}{3600} \text{ o.e.}$		
2	(a)			B1	allowed.
2	(a)		$1.99^2 = \frac{80h}{3600} \text{ o.e.}$	B1 M1	allowed. Must be h , not \sqrt{h}
2	(a)		$1.99^2 = \frac{80h}{3600}$ o.e. (h =) 178(.2)	B1 M1	allowed. Must be h , not \sqrt{h} ww2 (Must be correct – e.g. 178.4
2	(a)	(ii)	$1.99^2 = \frac{80h}{3600} \text{ o.e.}$	B1 M1 A1	allowed. Must be h , not \sqrt{h} ww2 (Must be correct – e.g. 178.4 \Rightarrow MO ww) (First step must be correct from correct
2	(a)	(ii)	$1.99^2 = \frac{80h}{3600}$ o.e. (h =) 178(.2)	B1 M1 A1	allowed. Must be h , not \sqrt{h} ww2 (Must be correct – e.g. 178.4 \Rightarrow MO ww) (First step must be correct from correct formula for first M1.)
2	(a)	(ii)	$1.99^{2} = \frac{80h}{3600} \text{ o.e.}$ $(h =) 178(.2)$ $A^{2} = \frac{hm}{3600}$ $3600A^{2} = hm$	B1 M1 A1 M1	allowed. Must be h , not \sqrt{h} ww2 (Must be correct – e.g. 178.4 \Rightarrow MO ww) (First step must be correct from correct formula for first M1.) Correctly squares at any stage
2	(a)	(ii)	$1.99^{2} = \frac{80h}{3600} \text{ o.e.}$ $(h =) 178(.2)$ $A^{2} = \frac{hm}{3600}$	B1 M1 A1 M1 M1	allowed. Must be h , not \sqrt{h} ww2 (Must be correct – e.g. 178.4 \Rightarrow MO ww) (First step must be correct from correct formula for first M1.) Correctly squares at any stage Correctly multiplies at any stage
2		(ii)	$1.99^{2} = \frac{80h}{3600} \text{ o.e.}$ $(h =) 178(.2)$ $A^{2} = \frac{hm}{3600}$ $3600A^{2} = hm$ $\frac{3600A^{2}}{m} = h$	B1 M1 A1 M1	allowed. Must be h , not \sqrt{h} ww2 (Must be correct – e.g. 178.4 \Rightarrow MO ww) (First step must be correct from correct formula for first M1.) Correctly squares at any stage Correctly multiplies at any stage Correctly divides at any stage Only a correct answer in this form can
2	(a)	(ii)(iii)	$1.99^{2} = \frac{80h}{3600} \text{ o.e.}$ $(h =) 178(.2)$ $A^{2} = \frac{hm}{3600}$ $3600A^{2} = hm$ $\frac{3600A^{2}}{m} = h$ $(x + 4) (x - 4)$	B1 M1 A1 M1 M1 (6)	allowed. Must be h , not \sqrt{h} ww2 (Must be correct – e.g. 178.4 \Rightarrow MO ww) (First step must be correct from correct formula for first M1.) Correctly squares at any stage Correctly multiplies at any stage Correctly divides at any stage Only a correct answer in this form can get M3.
2		(ii)(iii)	$1.99^{2} = \frac{80h}{3600} \text{ o.e.}$ $(h =) 178(.2)$ $A^{2} = \frac{hm}{3600}$ $3600A^{2} = hm$ $\frac{3600A^{2}}{m} = h$ $(x + 4) (x - 4)$ $x(x - 16)$	B1 M1 A1 M1 M1 (6) B1	allowed. Must be h , not \sqrt{h} ww2 (Must be correct – e.g. 178.4 \Rightarrow MO ww) (First step must be correct from correct formula for first M1.) Correctly squares at any stage Correctly multiplies at any stage Correctly divides at any stage Only a correct answer in this form can get M3. i.s.w. solutions in all (b)
2		(ii)(iii)(i)(ii)	$1.99^{2} = \frac{80h}{3600} \text{ o.e.}$ $(h =) 178(.2)$ $A^{2} = \frac{hm}{3600}$ $3600A^{2} = hm$ $\frac{3600A^{2}}{m} = h$ $(x + 4) (x - 4)$	B1 M1 A1 M1 M1 (6) B1 B1	allowed. Must be h , not \sqrt{h} ww2 (Must be correct – e.g. 178.4 \Rightarrow MO ww) (First step must be correct from correct formula for first M1.) Correctly squares at any stage Correctly multiplies at any stage Correctly divides at any stage Only a correct answer in this form can get M3. i.s.w. solutions in all (b)

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	4

	(c)	(i)	$x(3x-9) = 2x^2 - 8$ o.e.	M1	
			$2x^2 - 8 = 3x^2 - 9x$		No error seen and some working to
			$x^2 - 9x + 8 = 0$	E1	reach final quoted equation. Must have = 0. (E = established)
		(ii)	<i>x</i> = 1	B1	
			<i>x</i> = 8	B1	
		(iii)	time = 15 (sec) c.a.o.	B1	
			distance = 120 (m) c.a.o.	В1	
				(6)	
				(16)	
3	(a)	(i)	$17^2 + 32^2 - 2.17.32 \cos 40^\circ$	M2	Allow M1 for sign error or correct implicit eqn
			√their 479.54	M1	Dep M2. NOT for $\sqrt{225\cos 40^{\circ}}$ or $\sqrt{2146}$
			Answer in range 21.89 to 21.91 (m)	A1	www4
		(ii)	$\frac{\sin T}{17} = \frac{\sin 40^{\circ}}{\text{their } 21.9}$	M1	or $17^2 = 32^2 + (\text{their } 21.9)^2 - 2.32$. (their 21.9) cosT
			$\sin T = \frac{17 \sin 40^{\circ}}{\text{their } 21.9}$ (0.499)	M1	$\cos T = \frac{32^2 + (\text{their } 21.9)^2 - 17^2}{2.32. \text{ (their } 21.9)}$
			29.9°	A1	Accept 29.93° to 29.94°. www3
				(7)	
	(b)	(i)	125° c.a.o.	B1	All bearings must be $0^{\circ} \le \theta \le 360^{\circ}$ to score
	**	(ii)	305°	B1√	$\sqrt{(180^{\circ} + \text{their } 125^{\circ})}$ correct
	**	(iii)	335° or 334.9°	В1√	$\sqrt{\text{(their 305° + their } T)}$ correct
				(3)	
	(c)		$\tan(\hat{F}) = \frac{30}{32}$ o.e.	M1	$\frac{\text{or } F\hat{X}T = \tan^{-1} \frac{32}{30} \text{ clearly identified.}$
				A1	(43.15239°) www2 <u>NOT</u> 43.1
			43.2°	(2)	
				(12)	
4	(a)		Scale correct	S1	$0 \le t \le 7 \text{ (14 cm) and } 0 - 60 \uparrow \text{ (12 cm)}$
			8 correct plots (0 , 0), (1 , 25),		Allow P2 for 6 or 7 correct
			(2 , 37.5), (3 , 43.8), (4 , 46.9),	P3	P1 for 4 or 5 correct
			(5 , 48.4), (6 , 49.2), (7 , 49.6)		Accuracy better than 2mm horizontally. In correct square ↑
			Reasonable curve through 8 points	C1 (5)	Not for linear or <u>bad</u> quality

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	4

	(b)	(i)	$f(8) = 49.8 \text{ or } 49\frac{103}{128} \text{ o}$.e.	B1	Do not accept improper fractions
			$f(9) = 49.9 \text{ or } 49\frac{231}{256} \text{ o}$.e.	B1	
		(ii)	f(<i>t</i> large) ≈ 50		B1	
					(3)	
	(c)	(i)	Tangent drawn at $t = 2$		B1	Not a chord and not daylight
			Uses vert/horiz using so	cale	M1	Can be given after B0 if line not too far out
	**		Answer correct for their	tangent	A1 √	
		(ii)	Acceleration or units		B1	Accept ms ⁻² , m/s ² , m/s/s.
					(4)	
	(d)	(i)	Straight line through (0	, 10)	B1	Must be ruled and full length to earn B2
			Straight line gradient 6		B1	S Must be ruled and full length to earn B2
	**	(ii)	one √ intersection value	e for t	В1√	
	**		Second \sqrt{t} and range		В1√	
		(iii)	Distance = area (under	curve)	M1	
			First particle (f(t)) goes	further	A1	
					(6)	
					(18)	
M	arking	final a	answers throughout this o	uestion		
5	(a)	(i)	0.2	o.e.	B1	Accept 2/10, 1/5, 20%
		(ii)	0.4	o.e.	B1	After first B0 , condone "2 in 10" type answers.
		(iii)	0.5	o.e.	B1	Never condone 2 : 10 type
		(iv)	0.1	o.e.	B1	
		(v)	0		B1	Accept "none", "nothing", 0/10, nil, zero
					(5)	
	(b)	(i)	2/10 x 1/9		M1	
			1/45	o.e.	A1	Accept 2/90, 0.0222 2.22% www2
		(ii)	3/10 x 2/9		M1	
			1/15	o.e.	A1	Accept 6/90 etc, 0.0666(or 7), 6.66 or 6.67% www2
		(iii)	(their) 1/45 + (their) 1/1	5	M1	
			4/45	o.e.	A1	Accept 8/90 etc, 0.0888(or 9), 8.88 or 8.89% www2
		(iv)	Clearly 1 – (their) 4.45	o.e.	M1	Alternative method must be complete
			41/45		A1	Accept 82/90 etc, 0.911, 91.1% www2
					(8)	
					(13)	
						<u> </u>

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	4

6	(a)		$\pi(30)^2$ (50)	M1	
			141 000 (cm ³)	A1	(141 300 to 141 430) www2
				(2)	
	(b)	(i)	18 (cm)	B1	
		(ii)	$\cos\left(\frac{1}{2}\angle AOB\right) = \text{(their 18)/30}$	M1	Allow M1 or M2 at similar stages for other methods e.g. $\sin A = 18/30$ then $(180^{\circ} - 2A)$
			x2	M1dep	
			∠AOB = 106.26° c.a.o	A1 (4)	Must have 2 decimal places seen. ww1 (condone = 106.3 afterwards)
	(c)	(i)	(their) $\frac{106.3}{360}$ used	M1	
			$\pi(30)^2$ used	M1	
			834 to 835.3 (cm ²)	A1	www3
		(ii)	$\frac{1}{2}$.30.30sin (their) 106.3° or	M1	
			$\frac{1}{2}$.48.18		
			431.8 to 432 (cm ²)	A1	www2
		(iii)	Ans. Rounds to 403 cm ²	A1	
				(6)	
	(d)	(i)	50 x (their) 403	M1	
	**		20 100 to 20 200 (cm ³)	A 1√	√ correct for their "403" www2
	**	(ii)	20.1 to 20.2 (litres)	В1√	√ their previous answer ÷ 1000
				(3)	
	(e)		$k\left[\frac{1}{2}\text{their (a)} - \text{their (d)}\right]$	M1	$k = 1 \text{ (cm}^3) k = .001 \text{ (litres) } k = \text{ other } \Rightarrow$ consistent conversion error.
			50.3 to 51 (litres)	A1	Marking final answer www2
				(2)	
				(17)	
7	(a)	(i)	$F\begin{pmatrix} 2\\-4 \end{pmatrix}$	M1 A1	M marks for letters, A marks for descriptions. If <u>no</u> letter given, allow SC1 for correct description
		(ii)	D <i>x</i> = 1	M1 A1	·
		(iii)	E (2, -1)	M1 A1	
		(iv)	C (s.f.) 3	M1 A1	
		(v)	A Shear	M1 A1	
				(10)	

Page 5	Page 5 Mark Scheme		Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003		4

	(b)		$(-1-2)$ $\begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix}$ or QP	M1	Penalty –1 for <u>each</u> wrong one thought possible.
			(– 11 –17) <u>final</u> ans	A2	Allow SC1 for one correct
			$ (1 2 3) \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} $ or RS	M1	
			(12)	A2	Brackets essential here.
				(6)	Allow SC1 for 12 or -1 + 4 + 9
				(16)	
8	(a)	(i)	10 < M ≤ 15	B1	Must clearly mean this and not 32
		(ii)	Midpoints 5, 12.5, 17.5, 22.5, 32.5	M1	Allow for 3 or 4 correct
			$\sum fx \ (60 + 400 + 490 + 540 + 780)$	M1	(2270) Needs previous M1 or only marginally out
			(their) 2270 ÷ 120	M1	dep previous M1
			18.9 (2) (kg)	A1	www4
			(1)		
		(iii)	36°	B1	
				(6)	
	(b)		Horizontal scale 2 cm ≡ 5 units	S1	$0 \le M \le 40$. Accuracy < 2 mm.
			(numbered or used correctly)		If S0 (e.g. 1 cm ≡ 5 units) can score B5
					If S0 (e.g. 0, 10, 15) can only score on correct width bars. Penalty –1 for polygon superimposed.
			Heights 3k, 16k, 14k, 12k, 4k cm	B5	If not scored, decide on their "k" and allow SC1 for each "correct" bar. (Needs \geq 2 bars to decide on value of k if $k \neq 1$.)
			Their k = 1	B1	
				(7)	
				(13)	
9	(a)	(i)	(Diagram) 5 only	B1	
		(ii)	(Diagram) 4 only	B1	
		(iii)	(Diagram) 2 only	B1	
				(3)	

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – NOVEMBER 2003	0580/0581	4

(b)	Diagram 1 9 (cm ²)	B1	9.00 to 3 s.f.
	Diagrams 2 and 3 have same area	B1	
	One of them $\frac{1}{2} \times 3 \times 3$	M1	
	$4\frac{1}{2}$ (cm ²)	A1	www2
	Diagram 4 $\frac{1}{4} \pi 3^2$ s.o.i.	M1	(7.07 cm^2)
	$\frac{1}{2}$ x 6 x 6 – their $9\pi/4$	M1	indep. i.e. $18 - k\pi$ where k numerical
	10.9 (cm ²)	A1	www3
	Diagram 5 22 $\frac{1}{2}$ ° s.o.i	M1	$(bc = \sqrt{72})$
	$6 \tan 22 \frac{1}{2}$ °	M1	(2.485) (This is AD <u>or</u> DE)
	$\frac{1}{2}$ (6 – their 2.485) x 6	dep.M1	or $18 - \frac{1}{2} \times 6 \times 10^{-2}$ x 6 x their 2.485. (o.e.)
	10.5 (cm ²)	A1	www4
		(11)	
		(14)	