\square

International General Certificate of Secondary Education
 CAMBRIDGE INTERNATIONAL EXAMINATIONS MATHEMATICS 0580/2, 0581/2

 PAPER 2MAY/JUNE SESSION 2002
1 hour 30 minutes
Candidates answer on the question paper.
Additional materials:
Electronic calculator
Geometrical instruments
Mathematical tables (optional)
Tracing paper (optional)
TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

Write your name, Centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided on the question paper.
If working is needed for any question it must be shown below that question.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets [] at the end of each question or part question.
The total of the marks for this paper is 70 .
Electronic calculators should be used.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.
For π, use either your calculator value or 3.142 .
FOR EXAMINER'S USE

1 Javed says that his eyes will blink 415000000 times in 79 years.
(a) Write 415000000 in standard form.
Answer (a)
(b) One year is approximately 526000 minutes.

Calculate, correct to the nearest whole number, the average number of times his eyes will blink per minute.

Answer (b)

2 Luis and Hans both have their birthdays on January 1st.
In 2002 Luis is 13 and Hans is 17 years old.
(a) Which is the next year after 2002 when both their ages will be prime numbers?

Answer (a)
(b) In which year was Hans twice as old as Luis?

Answer (b)

3

Diagram 1

Diagram 2
(a) In Diagram 1, shade the area which represents $A \cup B^{\prime}$.
(b) Describe in set notation the shaded area in Diagram 2.

Answer (b)

4

NOT TO SCALE
$A B C D$ is a parallelogram and $B C E$ is a straight line. Angle $D C E=54^{\circ}$ and angle $D B C=20^{\circ}$.
Find x and y.

$$
\begin{array}{r}
\text { Answer } x= \\
y= \tag{2}
\end{array}
$$

\qquad

5 Calculate the length of the straight line joining the points $(-1,4)$ and $(5,-4)$.

> Answer

6

(a) Draw the vector $\overrightarrow{O C}$ so that $\overrightarrow{O C}=\mathbf{a}-\mathbf{b}$.
(b) Write the vector $\overrightarrow{A B}$ in terms of \mathbf{a} and \mathbf{b}.

$$
\text { Answer (b) } \overrightarrow{A B}
$$

7 The temperature decreases from $25^{\circ} \mathrm{C}$ to $22^{\circ} \mathrm{C}$. Calculate the percentage decrease.

Answer \%

8 Solve the inequality

$$
3(x+7)<5 x-9
$$

Answer

9 Elena has eight rods each of length 10 cm , correct to the nearest centimetre.
She places them in the shape of a rectangle, three rods long and one rod wide.

NOT TO
SCALE
(a) Write down the minimum length of her rectangle.

Answer (a) \qquad cm
(b) Calculate the minimum area of her rectangle.
\qquad cm^{2}

10 Mona made a model of a building using a scale of 1:20. The roof of the building had an area of $300 \mathrm{~m}^{2}$.
(a) Calculate the area of the roof of the model in square metres.

$$
\text { Answer (a) ... } \mathrm{m}^{2}
$$

(b) Write your answer in square centimetres.

Answer (b) cm^{2}

11 Make V the subject of the formula $\mathrm{T}=\frac{5}{V+1}$.

12 A seven-sided polygon has one interior angle of 90°. The other six interior angles are all equal.

Calculate the size of one of the six equal angles.

Part of the net of a cuboid is drawn on the 1 cm square grid above.
(a) Complete the net accurately.
(b) Calculate the volume of the cuboid.

Answer (b) \qquad cm^{3}
(c) Calculate the total surface area of the cuboid.

Answer (c) \qquad cm^{2}

14 (a) Write down the value of $x^{-1}, x^{0}, x^{\frac{1}{2}}$, and x^{2} when $x=\frac{1}{4}$.

$$
\begin{align*}
\text { Answer (a) } & x^{-1} \ldots \ldots . ~ \\
& x^{0}=\ldots . ~ \tag{2}
\end{align*} .
$$

(b) Write y^{-1}, y^{0}, y^{2} and y^{3} in increasing order of size when $y<-1$.

Answer (b) \qquad < $<$ \qquad $<$.

15 (a)

(i) Complete quadrilateral $A B C D$ so that the dotted line is the only line of symmetry.
(ii) Write down the special name for quadrilateral $A B C D$.

Answer (a)(ii) \qquad
(b)

(i) Complete quadrilateral $E F G H$ so that the dotted line is one of two lines of symmetry.
(ii) Write down the order of rotational symmetry for quadrilateral $E F G H$.

Answer (b)(ii) \qquad
$16 \mathrm{f}(x)=x^{\frac{1}{3}}$ and $\mathrm{g}(x)=2 x^{2}-5 \quad$ for all values of x.
(a) Find
(i) $\mathrm{g}(4)$,

> Answer (a)(i)
(ii) $\operatorname{fg}(4)$.
Answer (a)(ii)
(b) Find an expression for $\operatorname{gf}(x)$ in terms of x.

Answer (b) $\operatorname{gf}(x)$
(c) Find $\mathrm{f}^{-1}(x)$.

Answer (c) $\mathrm{f}^{-1}(x)$

NOT TO
SCALE

Two circles have radii $r \mathrm{~cm}$ and $4 r \mathrm{~cm}$.
Find, in terms of π and r.
(a) the area of the circle with radius $4 r \mathrm{~cm}$,
\qquad cm^{2}
(b) the area of the shaded ring,

Answer (b) \qquad cm^{2}
(c) the total length of the inner and outer edges of the shaded ring.

Answer (c) cm

18 (a) Omar changed 800 rands into dollars when the rate was $\$ 1=6.25$ rands.
(i) How many dollars did Omar receive?

Answer (a)(i) \$ \qquad
(ii) Three months later he changed his dollars back into rands when the rate was $\$ 1=6.45$ rands. How many extra rands did he receive?

Answer (a)(ii)
rands
(b) Omar's brother invested 800 rands for three months at a simple interest rate of 12% per year. How much interest did he receive?

19
$\mathbf{A}=\left(\begin{array}{rr}2 & -3 \\ -2 & 5\end{array}\right)$,
$\mathbf{B}=\left(\begin{array}{cc}4 & 3 x \\ 0 & -1\end{array}\right)$,
$\mathbf{C}=\left(\begin{array}{rr}10 & -15 \\ -2 & 3\end{array}\right)$.
(a) $\mathbf{A}+2 \mathbf{B}=\mathbf{C}$.
(i) Write down an equation in x.

Answer (a)(i)
(ii) Find the value of x.

Answer (a)(ii) $x=$
(b) Explain why \mathbf{C} does not have an inverse.

Answer (b)
(c) Find \mathbf{A}^{-1}, the inverse of \mathbf{A}.

20 (a) Factorise
(i) $x^{2}-5 x$,

Answer (a)(i)
(ii) $2 x^{2}-11 x+5$.

Answer (a)(ii)
(b) Simplify $\frac{x^{2}-5 x}{2 x^{2}-11 x+5}$.

The triangular area $A B C$ is part of Henri's garden.
$A B=9 \mathrm{~m}, B C=6 \mathrm{~m}$ and angle $A B C=95^{\circ}$.
Henri puts a fence along $A C$ and plants vegetables in the triangular area $A B C$.
Calculate
(a) the length of the fence $A C$,
Answer (a) AC=
(b) the area for vegetables.

(a) Find the equation of the line l shown in the grid above.
Answer (a)
(b) Write down three inequalities which define the region R.

Answer (b) \qquad
\qquad
\qquad
\qquad

BLANK PAGE

