

1	9 (a) (i)	-2.5 oe	2	M1 for $5(w+1) = 3w$
'		-2.5 de	2	B1 B1 (If 0, SC1 for $y + 1 = \pm 2$)
	(ii)			
	(iii)	9.5 oe	B3	M2 for $5x + 5 - 3x + 6 = 2 \times 15$ Condone one slip (sign or numerical) on left hand side 5(x+1) = 3(x-2)
				or M1 for $\frac{5(x+1)}{15} - \frac{3(x-2)}{15}$ or better,
				condoning one sign or numerical slip.
	(b) (i)	(u-10)(u+1)	2	SC1 for $(u + a)(u + b)$ where $ab = -10$ or $a + b = -9$
	(ii)	-1, 10	1ft	Only ft B2 or SC1 in (i) but can recover to correct answer only if new working or if (i) not attempted
	(c) (i)	$\frac{(x+1)(x+2)}{2} = x^2 \qquad \text{oe}$	M1	R R R R R R R R R R R R R R R R R R R
		$((x+1)(x+2)=)x^{2}+x+2x+2$	B1	Allow $3x$ for $x + 2x$
		$x^{2} + x + 2x + 2 = 2x^{2}$		
		$x^2 - 3x - 2 = 0$	E1	Established without any omissions or errors
	(ii)	$\frac{-(-3)\pm\sqrt{(-3)^2-4(1)(-2)}}{2(1)}$	-2	B1 for $\sqrt{(-3)^2 - 4(1)(-2)}$ or better seen
		2(1)		anywhere.
			and the second s	If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ then B1 for
				-(-3) and $2(1)$ or better Brackets and full line may be implied later
		-0.56, 3.56	2	B1 B1 SC1 for -0.6 or -0.562 to -0.561 and 3.6 or 3.561 to 3.562
	(iii)	12.7 or 12.67 to 12.69 ft	1 ft	ft their positive x squared
2	8 (a)	$(p+q)^2 - 5$ oe final answer	2	SC1 for $(p+q)^2$ oe seen
	(b)	6x + 9(x - 3) = 51 or better	B3	B2 for $6x + 9(x - 3)$
		5.2(0) final answer	B1	or B1 for $6x$ or $9(x - 3)$ 5.2(0) ww is B1 only
			51	
	(c)	a + c = 52 oe 3a + 2c = 139 oe	B1 B1	Condone consistent use of other variables or M3 for $3a + 2(52 - a) = 139$
		<i>WWW.C</i> _O	DI	or $3(52-c) + 2c = 139$ o.e.
		Correctly eliminating a or c .	M1	Allow one numerical slip.
		35 17	A1 A1	If A0, SC1 for 17, 35

39 (a)8w + 2j = 12
12w + 18j = 45
Correctly eliminating one variable
Water 1.05, Juice 1.8(0)5B1 condone consistent use of other variables
B1
M1 allow one numerical slip
A1 A1 1FA0, SC1 for 1.80, 1.05(b) (i)
$$\frac{2}{y}$$
, $\frac{4}{y-4} = \frac{40}{60}$ oe
 $\frac{2 \times 3(y-4)}{3(y-4)} = \frac{3 \times 4y}{3y(y-4)} = \frac{2y(y-4)}{3y(y-4)}$
e or better
 $6(y-4) + 12y = 2y(y-4)$ oc
 $6(y-2) + 12y = 2y(y-4)$ oc
 $9 = 2y^2 - 26y + 24$
 $y^2 - 13y + 12y = 2y(y-4)$ oc
 $9 = 2y^2 - 26y + 24$
 $y^2 - 13y + 12y = 2y(y-4)$
(ii)E2E2 Correct conclusion reached without any
errors or omissions including at least 3
intermediate steps.
or E1 1 any one slip, error or omission that is
recovered or correct with only two steps.
 $y^2 - 13y + 12y = 2y$ and $y^2 - 4y^2 - 4y^2$

5	5 (a) (i) $x^{2} + (x + 7)^{2} = 17^{2}$ oe $x^{2} + x^{2} + 7x + 7x + 49 = 17^{2}$	B1 B1	Must be seen
	(i	or better $2x^2 + 14x - 240 = 0$ $x^2 + 7x - 120 = 0$ i) $(x + 15)(x - 8)$	E1 2	Must be shown – correct 3 terms With no errors seen M1 for $(x + a)(x + b)$ where <i>a</i> and <i>b</i> are integers and $a \times b = -120$ or $a + b = 7$ Ignore solutions after factors given
		ii) -15 and 8 v) 15	1ft 1ft	Correct or ft dep on at least M1 in (ii) Correct or ft their positive root from (ii) + 7 dep on a positive and negative root given
	(b) (i) $3x(2x-1) = (2x+3)^2$ oe $4x^2 + 6x + 6x + 9$ or better seen	M1 B1	e.g. $6x^2 - 3x = 4x^2 + 12x + 9$ must see equation before simplification Indep
		$6x^2 - 3x = 4x^2 + 12x + 9 \text{ oe}$ $2x^2 - 15x - 9 = 0$	E1	With no errors seen and both sets of brackets expanded
	(i	i) $\frac{()15\pm\sqrt{((-)15)^2-4(2)(-9)}}{2(2)}$ oe	1	In square root B1 for $((-)15)^2 - 4(2)(-9)$ or better (297)
		2(2)		If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$,
				B1 for $-(-15)$ and $2(2)$ or better
	(i	8.06 and -0.56 cao ii) 76.5 (76.46 to 76.48)	1, 1 1ft	SC1 for -0.6 or -0.558 and 8.1 or 8.058 ft 8 times a positive root to (b)(ii) add 12
6	3 (a)	$5x^2 - x \text{ or } x(5x - 1)$	2	M1 for $x^2 + 3x$ or $4x^2 - 4x$ correct
	(b)) 27 <i>x</i> ⁹	2	B1 for 27 or for x^9
	(c)	(i) $7x^7(1+2x^7)$	2	M1 for any correct partially factorised
		(ii) $(y+w)(x+2a)$	2	or $7x^{7}(1 +)$ M1 for $x(y + w) + 2a(y + w)$ or y(x + 2a) + w(x + 2a)
		(iii) $(2x+7)(2x-7)$	1	
	(d)	$\frac{-5\pm\sqrt{5^2-4(2)(1)}}{2(2)}$ oe	2	In square root B1 for $5^2 - 4(2)(1)$ or better (17) If in form $\frac{p + \sqrt{q}}{\sqrt{q}}$ or $\frac{p - \sqrt{q}}{\sqrt{q}}$
				If in form r or r B1 for $p = -5$ and $r = 2(2)$
		-2.28 -0.22		SC1 for -2.3 or -2.281 to -2.280 and -0.2 or -0.220 to -0.219
1				

				k
7	3 (a)	3 www	3	M1 for $p = \frac{k}{(m+1)}$ or A1 for $k = 36$
				or M2 for $4 \times 9 = p \times 12$ oe
	(b)	(i) $(x+5)(x-5)$	1	
		(ii) $\frac{(2x+1)}{(x-5)}$ final answer	3	B2 for factors $(2x+1)(x+5)$ or SC2 for final
		(x-5)	5	
				answer $\frac{x+\frac{1}{2}}{x-5}$
				(B1 for $(2x + a)(x + b)$ where $ab = 5$ or $2b + a = 11$ or SC1 for $(x + \frac{1}{2})(x + 5)$)
				$2b + a = 11$ of Set 101 $(x + \frac{1}{2})(x + 5)$
	(c)	x < 7 oe final answer	3	M2 for $8x * 56$ where * is inequality or = sign (B1 for $5x - 20$ or $36 - 3x$)
8	5 (a)	2, 3, 4, 5	3	M2 for $1 < n \le 5$ seen (M1 for $1 < n$ or $n \le 5$) Allow $2 \le n < 6$ in M2 or M1 case
				If 0, B2 for 3 correct with no extras or 4 correct with 1 extra.
	(b)	(i) $2x(x+5y)$ (ii) $2(x-2h)(x+2h)$	2^{2}_{3}	B1 for $x(2x+10y)$ or $2(x^2+5xy)$ B2 for $(2x-(b)(x+2b))$ or $(x-2b)(2x+(b))$
		(ii) $3(a-2b)(a+2b)$		B2 for $(3a-6b)(a+2b)$ or $(a-2b)(3a+6b)$ or correct answer seen in working
				or B1 for $3(a^2 - 4b^2)$ If B0, SC1 for $a^2 - b^2 = (a - 2b)(a + 2b)$
	(c)	(i) $\frac{1}{2}x(x+17) = 84$ or $x(x+17) = 2 \times 84$	M 1	Condone $\frac{1}{2}x \times x + 17 = 84$ but only for M mark No errors or omission of brackets anywhere
		Correct proof of $x^2 + 17x - 168 = 0$ (ii) $(x - 7)(x + 24)$	E1 2	
				SC1 for $(x + a)(x + b)$ where a and b are integers and $a + b = 17$ or $ab = -168$
		(iii) 7 and –24 ft	1ft	Correct or ft from their factors if quadratic
	(d)	-3 www 3	3	B2 for $15-6=x-4x$ oe or better M1 for $15-x=2(3-2x)$ or better
				or $7\frac{1}{2} - \frac{x}{2} = 3 - 2x$
	(e)	$\sqrt{(-5)^2 - 4 \times 2 \times -6}$	B1	(√73)
		$\sqrt{(-5)^2 - 4 \times 2 \times -6}$ $p =5 \text{ and } r = 2 \times 2$	B1	Dependent on $\frac{p+\sqrt{q}}{\sqrt{q}}$ or $\frac{p-\sqrt{q}}{\sqrt{q}}$
		$p = -3$ and $r = 2 \times 2$	DI	r r
				or $\left(x - \frac{5}{4}\right)^2$ B1 $\sqrt{3 + \frac{25}{16}}$ B1
		3.39, -0.89 final answers	B1B1	$\sqrt{3 + \frac{1}{16}}$ B1 SC1 for 3.4 or 3.386 or 3.39 seen and -0.9 or
			7.7.	-0.886 or -0.89 seen

9	3 (a)	$(x+5)^2 - 2x^2 = 1$ oe	M1	Equiv means equation in the three parts, allowing $(x + 5)^2$ expanded
		(, , ; ;) 2 , , 10 , , 25	D1	anowing (x + 5) expanded
		$(x + 5)^2 = x^2 + 10x + 25$ or $x^2 + 5x + 5x + 25$	B1	
		$x^{2} + 10x + 25 - 2x^{2} = 1$ $0 = x^{2} - 10x - 24$	E1	For final line reached without any errors or omissions after any previous line with $(x + 5)^2$ expanded
	(b)	12	3	M2 for $(x - 12)(x + 2)$ or full correct expression from formula. Allow SC1 for $(x + a)(x + b)$ and $ab = -24$ or
		STATISTICS ST		a + b = -10 then SC1 ft (dependent on quadratic factors or two roots from formula) for correct selection of +ve root, if only one +ve. Answer of 12 and -2 scores M2 only
	(c)	53.1 to 53.2 www 3	3	M2 for $2 \times \tan^{-1}(\frac{1}{2})$ o.e. i.e. any complete
				method or M1 for tan = $\frac{1}{2}$ o.e. i.e. any correct method
				leading to any angle in diagram (expressions can be implicit and bod which angle is being worked out) (Implied by 26.56 to 26.57 or 26.6, 63.43 to 63.44 or 63.4, 126.8 to 126.9)
	2 (a)	0, 1, 2, 3	3	53 or 127 without working score 0 Additional values count as errors
10				B2 for one error/omission or B1 for two errors/ omissions After B0 , M2 for $-1 < x \le 3.5$ seen, allow 7/2 for 3.5 or M1 for $-1 < x$ or $x \le 3.5$ or $x = -1$ and $x = 3.5$ Allow M2 for $0 \le x < 4$ or M1 for $x \ge 0$ or $x < 4$
	(b)	$\frac{x-2}{x-5}$ www final answer	4	M3 for $\frac{(x+5)(x-2)}{(x+5)(x-5)}$.
				or M2 for $(x+5)(x-2)$ seen or M1 for $(x+a)(x+b)$ where $ab = -10$ or $a+b=3$ and M1 for $(x+5)(x-5)$ seen
	(c)	(i) $5(x+1)+2(x-3)=3(x+1)(x-3)$	M1	Allow if still over common denominator
		oe $x^2 - 3x + x - 3$ or better seen	Bl	Allow $x^2 - 2x - 3$ seen or $3x^2 - 9x + 3x - 9$ or better seen
		$3x^2 - 13x - 8 = 0$	E1	With no errors seen and brackets correctly expanded on both sides
		(ii) $\frac{-(-13)\pm\sqrt{(-13)^2-4(3)(-8)}}{2(3)}$	B1 B1	In square root B1 for $(-13)^2 - 4(3)(-8)$ or better (265)
				If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$,
		199 and 055 and	B1D1	B1 for $-(-13)$ and 2(3) or better SC1 for 4.88 and 0.55 seen or 0.5 and 4.9
		4.88 and -0.55 cao	B1B1	SC1 for 4.88 and – 0.55 seen or – 0.5 and 4.9 or – 0.546 and 4.879 to 4.880

11	5 (a)	63.45 or 63.5 cso	4	M1 for 10, 30, 45, 55, 65, 75, 85, 95 At least 6 correct mid-values soi and M1 for $\sum fx$ (6 × 10 + 12 × 30 + 20 × 45 + 5 × 95) (12690) where x is in the correct interval allow one further slip and M1 for their $\sum fx \div 200$ dep on second M1
	(b)	(i) 75 117 195 200	B2	B1 for 2 or 3 correct
		(ii) 8 correct points plotted	P3ft	P2ft for 6 or 7 P1ft for 4 or 5
		Curve (or polygon) correct through 8 points	C1ft	ft their increasing curve only if at least B1 in (b)(i) . Ignore $t = 0$ to 20
	(c)	(i) 65 to 67	B1ft	Or ft their curve at $cf = 100$
		(ii) 52 to 55	B1	
		(iii) 21 to 24	B1	the actual of the second second
		(iv) 44 to 52	B1	Must be integer
		(v) Integer value of 200 – reading at 45 secs	2ft	B1ft for integer value of reading at 45 secs
12	6 (a) (i)		M 1	or $(4x-7)(2x-1)-1=0$ only
		$8x^2 - 14x - 4x + 7$	B1	allow $-18x$ and/or $+6=0$ or $=-6$
		$4x^2 - 9x + 3 = 0$	E1	at least one more line e.g. $8x^2 - 18x + 6 = 0$ with no errors or omissions seen
	(ii)		B2	B1 for $\sqrt{(-9)^2 - 4(4)(3)}$ or better seen ($\sqrt{33}$)
		$(x=) \begin{array}{c} -(-9) \pm & (-9)^2 - 4(4)(3) \\ 2 \times 4 \end{array}$		B1 for $p = -(-9)$ and $r = 2 \times 4$ or better as long as
				in the form $\frac{p + or - \sqrt{q}}{r}$
		(x =) 0.41, 1.84 cao		After B0B0, SC1 for 0.4 or 0.406(929) and 1.8 or 1.843(070)
	(iii)	0.36 or 0.3720 to 0.3724 or 0.37	B1ft	ft their value to give positive $(4x - 7)$
	(b) (i)	(x-4)(x+4)	B1	
	(ii)	$(2x+3)(x+4) + (x+40) = 2(x^2 - 16)$ oe	M2	fractions cleared or could all still be over $(x^2 - 16)$ or
		$2x^{2} + 8x + 3x + 12$ or $2x^{3} + 3x^{2} - 32x - 48$	B1	$(2x+3)(x^2-16) + (x+40)(x-4) = 2(x-4)(x^2-16)$ Condone sign slips
			//(
		x = -7 www 4	A1	

			_	1
15	12 (a)	10x + 4y = 10.7 oe	1	
		8x + 6y = 10.1 oe	1	
		Multiplying or dividing equation(s) by number(s) suitable for elimination	M1	Allow one arithmetic error. If substitution, correctly making one variable the subject of one equation.
		Elimination of one variable	M1	Allow one arithmetic error. If substitution method then M is for the actual substitution.
		x = 0.85 cao y = 0.55 cao	A1 A1	SC1 for correct fractions After M0, SC2 for both correct answers
		THE REAL STREET		If working in cents, likely mark is 0 for equations, M2 for method, A2 if answers converted to dollars, A1 if left in cents
	(b)	$\frac{-5\pm\sqrt{(-5)^2-4.28}}{2.2}$	B2	B1 for $\sqrt{(-5)^2 - 4.2 8}$ ($\sqrt{89}$)
				B1 for $\frac{p+\sqrt{p-1}}{r}$ or $\frac{p-\sqrt{p-1}}{r}$ with $p =5$ or 5
				and $r = 2 \times 2$ or 4
				Completing the square B1 for $\left(x - \frac{5}{4}\right)^2$ and
				B1 for $\sqrt{4 + \frac{25}{16}}$
		3.61 or –1.11 final answer	B1B1	After B0 B0 for answers, SC1 for 3.6 or 3.608 and -1.1 or -1.108 or 3.61 and -1.11 seen Correct answers without working score max 2
16	10 (a)	1.3[0]	3	M2 for $(31.7[0] - 7) \div (12 + 7)$ or better Or M1 for $12x + 7(x + 1) = 31.7[0]$ or better or $31.7[0] - 7$ or better)
	(b) (i)	$\frac{36}{y} - \frac{36}{y+1} = 25$ oe	M2	SC1 for $\frac{36}{y}$ or $\frac{36}{y+1}$ or seen
		36(y+1) - 36y = 25y(y+1) oe —		Accept both all over $y(y + 1)$
		$36y + 36 - 36y = 25y^2 + 25y$ oe		Must see at least one of these lines before E mark
		$25y^2 + 25y - 36 = 0/11/11$	E1	Final line reached without any errors or omissions
	(ii)	(5y+9)(5y-4)	2	Accept $(25y - 20)(y + 1.8)$ oe SC1 for $(5y + m)(5y + n)$ where $mn = -36$ or m + n = 5
	(iii)	-1.8 oe, 0.8 oe	1ft	ft only SC1 from (b)(ii)
	(iv)	2.6[0]	1ft	ft 2 × positive root from (b)(iii) +1 Dep on pos and neg root in (b)(iii)

17 4 a) (i) 2.5 or
$$\frac{5}{2}$$

(ii) 13
b) (i) 2.7 x³y¹² final answer
(ii) $4a^{3}b^{11}$ final answer
(iii) $\frac{x+1}{x+8}$ www final answer
(iii) $\frac{x+1}{x+8}$ with final answer
(i) $\frac{x+1}{x+2}$ with fina

			
19 5	(a) 0.57	B4	Condone use of other variables
			M1 for $2w + 3l = 3.6$ oe
			and M1 for $l = w + 0.25$ oe
			A1 for correct $aw = b$ or $cl = d$
			or M2 for $2w + 3(w + 0.25) = 3.6$ oe or
			2(l - 0.25) + 3l = 3.6 oe
			or M1 for $w + 0.25$ or $l - 0.25$ seen
			A1 for $2w+3w=3.6-0.75$ or better
			or $2l + 3l = 3.6 + 0.5$ or better
			l = 0.82 implies M2A1
			trial & error scores B4 or zero
			accept answer 57 if written 57 cents
	The willing	199	after M0, SC3 if answer 57
	5 6		
	(b) (i) $\frac{5}{x} + \frac{6}{x+2} = 1$ oe	M2	e.g. $\left(1-\frac{5}{x}\right)(x+2)=6$
	9		M1 for $\frac{5}{r}$ seen or $\frac{6}{r+2}$ seen
			λ $\lambda \top \Sigma$
			or $xy = 5$ and $(x + 2)Y = 6$ oe or $xy = 5$ and $(x + 2)(1-y) = 6$ oe
			of $xy - 5$ and $(x + 2)(1 - y) = 0$ de
	5(x+2) + 6x = x(x+2) oe	A1	e.g. $(x-5)(x+2) = 6x$
			Allow $5x + 10 + 6x = x^2 + 2x$ and allow all over
			correct denominator but must see this line
	$5x + 10 + 6x = x^2 + 2x$ oe		One correctly expanded line seen
	$0 = x^2 - 9x - 10$	E1	No errors or omissions
	(ii) $(x-10)(x+1)$	2	SC1 for $(x + a)(x + b)$ where
			ab = -10 or a + b = -9
	(iii) 21	2ft	ft a positive x into $2(x + \frac{5}{x})$
			M1 for 0.5 seen or 5 / <i>their</i> positive root
	(c) (i) $(2x+3)^2 = (x+3)^2 + 5^2$ oe	M1	
		B1	for $4x^2 + 6x + 6x + 9$ or $4x^2 + 12x + 9$
	$4x^{2} + 6x + 6x + 9 =$ x ² + 3x + 3x + 9 + 25 oe	B 1	for $x^2 + 3x + 3x + 9$ or $x^2 + 6x + 9$
	$3x^2 + 6x - 25 = 0$	E 1	No errors or omissions
	$-6 \pm \sqrt{6^2 - 4(3)(-25)}$		
	(ii) $\frac{-6\pm\sqrt{6^2-4(3)(-25)}}{2(3)}$	B2	B1 for $\sqrt{6^2 - 4(3)(-25)}$ or better seen
	uuu. 08		If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ oe
			B1 for $p = -6$ and $r = 2(3)$ or better
	– 4.06, 2.06 final answer	B2	B1 B1
		112	After B0 B0
			SC1 for – 4.1 and 2.1
			or - 4.055 and 2.055
			or –4.06 and 2.06 seen
	(iii) 12.63 to 12.65 or 12.6 or	2ft	ft (a positive $x + 3$) × 2.5
	12.7		SC1 for $0.5 \times their$ positive value $\times 5$ written
1 1	1		

20	5 (:	a)	$\frac{27}{x}$ final answer	1	
	0	b)	$\frac{25}{x-2}$ final answer	1	
	(c)	$\frac{25}{x-2} - 4 = \frac{27}{x}$ oe	M1	FT <i>their</i> (b) $-4 = their (a)$ oe must be eqn in x
			25x - 4x(x - 2) = 27(x - 2) oe	M1	FT $\frac{25}{x-2} + 4 = \frac{27}{x}$ or <u>only</u> for 2 nd and 3 rd
			$4x^{2} + 27x - 25x - 8x - 54 = 0$ oe $2x^{2} - 3x - 27 = 0$ without error	M1dep	M mark If all on one side then condone omission of '= 0' Dep on 2^{nd} M1 Must see brackets expanded before this award and terms on one side of eqn Must see $4x^2 - 6x - 54 = 0$ first
			seen		
	(d)	-3, 4.5	3	B2 for $(2x-9)(x+3)$ or SC1 for $(2x+a)(x+b)$ where <i>a</i> and <i>b</i> are integers and $a + 2b = -3$
			R Gr		or $ab = -27$
	6	e)	6 cao		
21					
21	10	(a)	(i) final answer $\frac{25-8x}{20}$ (ii) final answer $\frac{2x^2+5x+9}{3(x+3)}$	2 3	M1 for $\frac{5 \times 5 - 4 \times 2x}{5 \times 4}$ or better seen B1 for $2x^2 + 6x - x - 3$ soi and B1 for denom $3(x+3)$ or $3x + 9$ seen
	(b)		$x = \frac{2}{3}$ oe or 0.667 or 0.6666 to 0.6667	3	M1 for correct method to eliminate one variable A1 for $x = {}^{2}_{3}$ oe or 0.667 or 0.6666 to 0.6667
	(c)		y = -3 final answer $\frac{7}{2x+3}$ www	4	or $y = -3$ B1 for 7(x+3) in numerator
					and B2 for $(2x+3)(x+3)$ in denominator
			uuu. Q8	M	or SC1 for $(2x+a)(x+b)$ where <i>a</i> and <i>b</i> are integers and $a+2b=9$ or $ab=9$
					After B1 scored, SC1 for final answer $\frac{7}{2(x+1.5)}$ or $\frac{3.5}{x+1.5}$

	4.0			-	
22	10 (a)	(i)	4.5 or 4½	3	M2 for a complete correct method or M1 for one correct step at any stage.
		(ii)	(x-6)(x-1)	M2	M1 for $(x + a)(x + b)$ where $ab = 6$ or $a + b = -7$
			1, 6	A1FT	FT their brackets dep on M1 earned After M0 scored SC1 for 1, 6 as answer
		(iii)	6	4	B1 for $2(3x - 2) + x + 2 = 4 \times 10$ oe and B1 for correct multiplication of a bracket and M1 for correct rearrangement of their linear equation without brackets to $ax = b + c + d$ or better
	(b)	Statement and	<i>a</i> = 1/3 oe, <i>b</i> = 1/2 oe	6	B1 for any one of 1 = a + b + 1/6 oe 5 = 8a + 4b + 2/6 oe 14 = 27a + 9b + 3/6 oe 30 = 64a + 16b + 4/6 oe Or any other correct equation and B1 for another of the above equations and M1 for equating one coefficient or correct rearrangement to give <i>a</i> or <i>b</i> as subject and M1 for subtracting to eliminate <i>a</i> or <i>b</i> or correct substitution for <i>their a</i> or their <i>b</i> A1 for $a = 1/3$ oe or $b = 1/2$ oe
23	8	(a) / <i>p</i>	$(-11)^2 - 4(8)(-11)$ or better = $-(-11), r = 2(8)$ or better	B1 B1	Seen anywhere or for $\left(x - \frac{11}{16}\right)^2$ Must be in the form $\frac{p + \sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$ or B1 for $\sqrt{\frac{11}{8} + \left(\frac{11}{16}\right)^2} + \frac{11}{16}$
		- 0.67	7, 2.05 final answers	B1B 1	SC1 for - 0.7 or - 0.672 to - 0.671 and 2.0 or 2.046 to 2.047
			32	3	or answers 0.67 and -2.05 M1 for $y = k\sqrt{x}$ oe or $\sqrt{x = ky}$ oe A1 for k = 6 oe or better or for k = 0.1666 to 0.167 [k = 6 implies M1A1] oe x = x - 14.5
		(c) 2	0 with supporting algebraic workin	g 6	B2 for $\frac{x}{2.5} + \frac{x-14.5}{0.5} = 19$ oe or B1 for $\frac{x}{2.5}$ or $\frac{x-14.5}{.5}$ M1dep on B2 for first completed correct move to clear both fractions M1 for second completed correct move to collect terms in <i>x</i> to a single term M1 for third completed correct move to collect numeric term[s] leading to $ax = b$ SC1 for 20 with no algebraic working

24 3 (a)
$$\frac{4x-7}{10}$$
 final answer nfww
(b) $x^{2} + 9$ final answer nfww
(c) (f) $(2x-1)(x+3)$ isw solving
(f) $\frac{2x-1}{2(x-3)}$ or $\frac{2x-1}{2x-6}$
(g) (f) $(2x-1)(x+3)$ isw solving
(g) $\frac{2x-1}{2(x-3)}$ or $\frac{2x-1}{2x-6}$
(g) (f) $\frac{2x-1}{2(x-3)}$ or $\frac{2x-1}{2x-6}$
(g) (g) $\frac{2x-1}{2(x-3)}$ or $\frac{2x-1}{2x-6}$
(g) (g) $\frac{2x-1}{2(x-3)}$ or $\frac{2x-1}{2x-6}$
(g) (g) $\frac{2(x-1)(x+3)}{t^{2}}$ or $\frac{1}{2x-6}$
(g) (g) $\frac{2(x-1)(x+3)}{t^{2}}$ or $\frac{1}{2x-6}$
(g) (g) $\frac{2(x-1)(x+3)}{t^{2}}$ or $\frac{1}{2x-6}$
(g) (h) $\frac{36.75}{t^{2}}$ cas $\frac{1}{2x-6}$
(g) $\frac{2(x-3)(x-3)}{t^{2}}$ or $\frac{1}{2x-6}$
(g) $\frac{2(x-3)(x-3)}{t^{2}}$ or $\frac{1}{2x-6}$
(g) $\frac{16}{5}$ or better $\frac{1}{32}$
(h) $\frac{3}{2}$ and -5
(h) $\frac{3}{2}$

27
8 (a) (b)
$$\frac{600}{x} = \frac{600}{x+1}$$

(c) (c) $\frac{600}{x} = \frac{600}{x+1} = 20 \text{ oc}$
(d) $\frac{600}{x} = \frac{600}{x+1} = 20 \text{ oc}$
(e) (f) $\frac{600}{x} = \frac{600}{x+1} = 20 \text{ oc}$
(f) $\frac{600}{x} = \frac{600}{x+1} = 20x^2 + 20x}$
(g) $\frac{600}{x^2 + 20x - 300} = \frac{600}{x^2 + 20x}$
(h) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(f) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(g) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(h) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(f) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(g) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(g) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(h) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(h) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(h) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(h) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(h) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(h) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(h) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(h) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(h) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(h) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(h) $\frac{7x 2 + (2x - 3)(x + 4) = 2(x + 4)}{2x^2 + (2x - 3)(x + 4) = 2(x + 4)}$
(h) $\frac{7x 2 + (2x - 3)(x + 4)}{2x^2 + (2x - 3)($

29 2 (a)
$$[\pm]\sqrt{y^2 + 2ay}$$
 final answer
(b) (i) $\frac{60}{x} + \frac{45}{x+4} = 6$ oc
 $60(x+4) + 45x = 6x(x+4)$ M1 Dep on M2
 $60x + 240 + 45x = 6x(x+4)$ M1 Dep on M2
 $60x + 240 + 45x = 6x^2 + 24x$ oe
 $0 = 2x^2 - 27x - 80$ A1
 (i) 16 final answer
(i) 16 final answer
(ii) 16 final answer
(iii) 16 final answer
(ii) 16 final answer
(iii) 17 cu
(iii) 150 c

30	1	(a)		11 x final answar	2	M1 for $8x - 4 - 9x + 15$
	4	(a)		11 - x final answer		or
						B1 for final answer $11 - kx$ or $k - x$
			(ii)	$6x^2 - xy - 12y^2$ final answer	3	M2 for $6x^2 + 8xy - 9xy - 12y^2$ [= 0] or for final answer with one error in a coefficient (includes sign) but otherwise correct
						or M1 for any two of $6x^2$, $8xy$, $-9xy$, $-12y^2$
		(b)		$x(x^2 - 5)$ final answer	1	Condone $x(x - \sqrt{5})(x + \sqrt{5})$ as final answer
		(c)		$x \ge 4$ or $4 \le x$ final answer nfww	3	B2 for 4 with no/incorrect inequality or equals sign as answer or M2 for $8x + 4 \le 15x - 24$ or better
				11111111111		or M1 for $4(2x + 1) \le 3(5x - 8)$
		(d)	(i)	p = 4.5 oe q = 8.25 oe	3	B2 for one correct answer or for $(x - 4.5)^2 - 8.25$ oe seen
				<i>q</i> = 8.25 0e		or M1 for $(x-4.5)^2$ oe seen or $x^2 - px - px + p^2$ seen
					A REAL	and M1 for $p^2 - q = 12$ or $2p = 9$
			(ii)	-8.25 oe	1FT	FT - their q
			iii)	<i>x</i> = 4.5 oe	1FT	FT $x = their p$
31						
ا` ` ا	2	(a)		x > 0.5 oe final answer nfww	3	B2 nfww for 0.5 with no/incorrect inequality or
	2	(a)		x > 0.5 oe final answer nfww	3	B2 new for 0.5 with no/incorrect inequality or equals sign as answer or M2 for $7x + 15x > 6 + 5$ or better
	2	(a)		x > 0.5 of final answer infinite	3	equals sign as answer
	2	(a) (b)			3	equals sign as answer or M2 for $7x + 15x > 6 + 5$ or better or $-6 - 5 > -7x - 15x$ or better or M1 for $6 - 15x$ seen
	2			(p-2)(q+4) final answer		equals sign as answer or M2 for $7x + 15x > 6 + 5$ or better or $-6 - 5 > -7x - 15x$ or better
	2		(i) (ii)	(p-2)(q+4) final answer	2	equals sign as answer or M2 for $7x + 15x > 6 + 5$ or better or $-6 - 5 > -7x - 15x$ or better or M1 for $6 - 15x$ seen M1 for $q(p-2) + 4(p-2)$ or $p(q+4) - 2(q+4)$ M1 partial factorisation, e.g. $x(5x-9) + 2(5x-9)$ or SC1 for $(5x + a)(x + b)$ where $ab = -18$
	2	(b)	(i) (ii)	(p-2)(q+4) final answer (3p-5)(3p+5) final answer (5x-9)(x+2)	2	equals sign as answer or M2 for $7x + 15x > 6 + 5$ or better or $-6 - 5 > -7x - 15x$ or better or M1 for $6 - 15x$ seen M1 for $q(p-2) + 4(p-2)$ or $p(q+4) - 2(q+4)$ M1 partial factorisation, e.g. $x(5x-9) + 2(5x-9)$
	2	(b)	(i) (ii)	(p-2)(q+4) final answer (3p-5)(3p+5) final answer	2 1 M2 B1	equals sign as answer or M2 for $7x + 15x > 6 + 5$ or better or $-6 - 5 > -7x - 15x$ or better or M1 for $6 - 15x$ seen M1 for $q(p-2) + 4(p-2)$ or $p(q+4) - 2(q+4)$ M1 partial factorisation, e.g. $x(5x-9) + 2(5x-9)$ or SC1 for $(5x + a)(x + b)$ where $ab = -18$
	2	(b)	(i) (ii)	(p-2)(q+4) final answer (3p-5)(3p+5) final answer (5x-9)(x+2) $\frac{9}{5}$ oe and -2 final answer	2 1 M2 B1	equals sign as answer or M2 for $7x + 15x > 6 + 5$ or better or $-6 - 5 > -7x - 15x$ or better or M1 for $6 - 15x$ seen M1 for $q(p-2) + 4(p-2)$ or $p(q+4) - 2(q+4)$ M1 partial factorisation, e.g. $x(5x-9) + 2(5x-9)$ or SC1 for $(5x + a)(x + b)$ where $ab = -18$ or $a + 5b = 1$
	2	(b)	(i) (ii)	(p-2)(q+4) final answer (3p-5)(3p+5) final answer (5x-9)(x+2) $\frac{9}{5}$ oe and -2 final answer	2 1 M2 B1	equals sign as answer or M2 for $7x + 15x > 6 + 5$ or better or $-6 - 5 > -7x - 15x$ or better or M1 for $6 - 15x$ seen M1 for $q(p-2) + 4(p-2)$ or $p(q+4) - 2(q+4)$ M1 partial factorisation, e.g. $x(5x-9) + 2(5x-9)$ or SC1 for $(5x + a)(x + b)$ where $ab = -18$ or $a + 5b = 1$
	2	(b)	(i) (ii)	(p-2)(q+4) final answer (3p-5)(3p+5) final answer (5x-9)(x+2) $\frac{9}{5}$ oe and -2 final answer	2 1 M2 B1	equals sign as answer or M2 for $7x + 15x > 6 + 5$ or better or $-6 - 5 > -7x - 15x$ or better or M1 for $6 - 15x$ seen M1 for $q(p-2) + 4(p-2)$ or $p(q+4) - 2(q+4)$ M1 partial factorisation, e.g. $x(5x-9) + 2(5x-9)$ or SC1 for $(5x + a)(x + b)$ where $ab = -18$ or $a + 5b = 1$
	2	(b)	(i) (ii)	(p-2)(q+4) final answer (3p-5)(3p+5) final answer (5x-9)(x+2) $\frac{9}{5}$ oe and -2 final answer	2 1 M2 B1	equals sign as answer or M2 for $7x + 15x > 6 + 5$ or better or $-6 - 5 > -7x - 15x$ or better or M1 for $6 - 15x$ seen M1 for $q(p-2) + 4(p-2)$ or $p(q+4) - 2(q+4)$ M1 partial factorisation, e.g. $x(5x-9) + 2(5x-9)$ or SC1 for $(5x + a)(x + b)$ where $ab = -18$ or $a + 5b = 1$
	2	(b)	(i) (ii)	(p-2)(q+4) final answer (3p-5)(3p+5) final answer (5x-9)(x+2) $\frac{9}{5}$ oe and -2 final answer	2 1 M2 B1	equals sign as answer or M2 for $7x + 15x > 6 + 5$ or better or $-6 - 5 > -7x - 15x$ or better or M1 for $6 - 15x$ seen M1 for $q(p-2) + 4(p-2)$ or $p(q+4) - 2(q+4)$ M1 partial factorisation, e.g. $x(5x-9) + 2(5x-9)$ or SC1 for $(5x + a)(x + b)$ where $ab = -18$ or $a + 5b = 1$
	2	(b)	(i) (ii)	(p-2)(q+4) final answer (3p-5)(3p+5) final answer (5x-9)(x+2) $\frac{9}{5}$ oe and -2 final answer	2 1 M2 B1	equals sign as answer or M2 for $7x + 15x > 6 + 5$ or better or $-6 - 5 > -7x - 15x$ or better or M1 for $6 - 15x$ seen M1 for $q(p-2) + 4(p-2)$ or $p(q+4) - 2(q+4)$ M1 partial factorisation, e.g. $x(5x-9) + 2(5x-9)$ or SC1 for $(5x + a)(x + b)$ where $ab = -18$ or $a + 5b = 1$

32			r ⁸		
	6	(a)	(i) $\frac{x^8}{3}$ final answer	1	
			(ii) $15x^7y^3$ final answer	2	M1 for 2 elements correct
			(iii) $16x^8$ final answer	2	M1 for $16x^k$ or kx^8
					$(7)^2$
		(b)	$\sqrt{([-]7)^2 - 4.3 - 12}$ or better	B1	or for $\left(x - \frac{7}{6}\right)^2$
			and $p = []7$ and $r = 2(3)$ oe	B1	Must see $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or both
				and the second s	or for $\frac{7}{6} \pm \sqrt{4 + \left(\frac{7}{6}\right)^2}$
					$\begin{array}{c} 6 \\ 6 \\ 6 \\ \end{array} $
			3.48, -1.15 cao	B1 B1	After B0 , SC1 for answer 3.5 and -1.1
			9111111111		or 3.482 and -1.149 to -1.148 seen
					or for 3.48, -1.15 seen or for answer -3.48 and 1.15
		(c)	$\frac{x+5}{x^2}$ or $\frac{1}{x} + \frac{5}{x^2}$ final answer	3	B1 for $(x + 5)(x - 5)$
			x^2 or $x + x^2$ must unot of nfww	5	and
22					B1 for $x^2(x-5)$
33	10	(a)	(i) $5x + 14$ final answer	2	M1 for $5x + k$ or $kx + 14$
			ii) 14.2	3	M1 for $5x = 32 - 14$ FT <i>their</i> expression in (a)(i) A1FT for $x = 3.6$
		(b)	8a - 3b + 14 = 32.5 or better	B1	8a - 3b = 18.5
			5a + 4b + 13.5 = 39.75 or better	B1	5a + 4b = 26.25
			Equates coefficients of either <i>a</i> or <i>b</i>	M1	or rearranges one of <i>their</i> equations to make a or b the subject
			40a - 15b = 92.5 40a + 32b = 210		e.g. $a = \frac{3b + 18.5}{8}$
			or $32a - 12b = 74$		
			15a + 12b = 78.75		
			Adds or subtracts to eliminate $47k = 117.5$	M1	Dep on previous method
			47b = 117.5 47a = 152.75		or correctly substitutes into the second equation e.g. $\frac{5(3b+18.5)}{2} + 4b = 26.25$
			[a=] 3.25 WWW.	Al	e.g. + 40 = 20.23
			[<i>b</i> =] 2.5	A1	After M0 scored SC1 for 2 correct values with no working
					or for two values that satisfy one of their original equations
					required to the second s

36 3 (a) (i)
$$\frac{600}{x+20}$$
 final answer 1 1
(i) $\frac{600}{x} - ihcbr \frac{600}{x+20} = 1.5$ oe M1
 $\frac{600(x+20) - 600x}{or} = 1.5x(x+20)$ M1
 $\frac{600(x+20) - 600x}{x(x+20)} = ihcirl.5]$ M1
 $\frac{600(x+20) - 600x}{x(x+20)} = ihcirl.5]$ M1
 $\frac{600(x+20) - 600x}{x(x+20)} = ihcirl.5]$ M1
 $\frac{1}{100(x+20) - 600x} = 1.5x^2 + 30x$ M1
 $\frac{1}{100(x+20) - 600x} = 1.5x^2 + 20x^2 + 100^2 + 10^2 + 100^2 +$

37 9 (a)
$$4x - 3x^3 \operatorname{or} x(4 - 3x) \operatorname{nfww}_{\text{final answer}}$$

(b) (i) $(2 + y)(3w - 2x) \operatorname{oe}$ final answer
(ii) $(2x + 5y)(2x - 5y)$ final answer
(iii) $(2x + 5y)(2x - 5y)$ final answer
2 MI for $3x^2 - 6x - 6x^2 + 10x$
MI for $3x^2 - 2x(2 + y)$
or $2(3w - 2x) + y(3w - 2x)$
2 MI for $2x + 5y)(2x - 5y)$ or $(2x + 5y)(2x - 5y)$
or $(x + 5y)(x - 5y)$, $k \neq 0$ or $(2x + 5y)(2x - 5y)$
or $(2 + 5y)(2x - 5y)$ or $(2x + 5y)(2x - 5y)$
(c) $\frac{27x^4}{64}$ final answer
(d) (i) $2n$ is even and subtracting T gives
an odd number
(ii) $2n + 1$ oe final answer
(iii) $dheir(2n + 1)^2 - (2n - 1)^2$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $8n$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $8n$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $8n$
 $4n^2 - 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n - 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n + 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n + 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n + 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n + 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n^2 + 1$
 $4n^2 + 4n + 1 - 4n^2 + 4n^2 + 1$
 $4n^2 + 4n + 1 - 4n^2 +$

38 7 (a) (b) 331 or 331.1 to 331.2
(i)
$$\frac{A-\pi r^2}{\pi r}$$
 or final answer
(b) (i) 4.39 or 4.390...
(b) (i) 4.39 or 4.390...
(ii) $x + x + 4$ or
 $\frac{x}{3}$ or $\frac{x + 4}{10}$
(ii) $x + x + 4$ or
 $\frac{x}{2}$ or $\frac{x + 4}{10}$
(ii) $\frac{x + x + 4}{2} = 7$ or
12
(c) (i) 16.5[0] final answer
(ii) $\frac{100r}{100r}$ final answer
(iii) $\frac{100r}{100 + y}$ final answer
(iii) $\frac{100r}{100 + y}$ final answer
(ii) $\frac{100r}{100 + y}$ final answer
(iii) $\frac{x}{10} = \frac{1}{10} = \frac{1}{10}$
(ii) $\frac{100r}{100 + y}$ final answer
(iii) $\frac{100r}{100 + y}$ final answer
(ii) $\frac{100r}{100 + y}$ final answer
(iii) $\frac{100r}{100 + y}$ final answer
(ii)

				-	-
39	8	(a)	(x-5)(x+2) final answer	2	B1 for $(x-5)(x+2)$ seen and then spoiled or M1 for $(x+a)(x+b)$ where $a+b = -3$ or $ab = -10$ [a, b integers]
		(b)	(i) $x(x + 2) + 3(x + 1) = 3x(x + 1)$ or $x^2 + 2x + 3x + 3 = 3x^2 + 3x$	M2	M1 for $x(x + 2) + 3(x + 1)$ or better seen Allow recovery of omitted brackets for M marks but not A mark
			$0=2x^2-2x-3$	A1	Brackets expanded correctly and/or no errors or omission of brackets seen
			(ii) $\underline{[]2 \pm \sqrt{([-]2)^2 - 4(2)(-3)}}$ 2(2)	B2	B1 for $\sqrt{([-]2)^2 - 4(2)(-3)}$ or $\sqrt{28}$ or $\sqrt{1.75}$ oe in completion of square
			or $0.5 \pm \sqrt{1.75}$		and B1 for in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ p = -2 and $r = 2(2)$ or better or $(x - 0.5)^2$ oe in completion of square
			- 0.823 and 1.823 final answer	B1 B1	If B0B0 for answers, SC1 for -0.82 or -0.822 and 1.82 or 1.822 as final answers or -0.823 and 1.823 seen or -1.823 and 0.823 as final answers
		(c)	$\frac{x^{2} + 3x + 3}{(x+2)(x+1)} \text{ or } \frac{x^{2} + 3x + 3}{x^{2} + 3x + 2} \text{ final}$ answer nfww	4	M1 for $(2x + 3)(x + 1) - x(x + 2)$ oe isw B1 for common denominator = $(x + 2)(x + 1)$ isw or $x^2 + 3x + 2$ isw B1 for $2x^2 + 2x + 3x + 3$ or better or $-x^2 - 2x$ or $x^2 + 3x + 3$
40	7	(a)	83 nfww	4	B3 for $17x = 1411$ or $17x = 14.11$ oe in form $ax = b$ or final answer of 0.83 or B2 for $6x + 11x - 55 = 1356$ oe or $6x + 11x - [0.] 55 = 13[.]56$ or M1 for $6x + 11(x - [0.0]5) = 13[.]56$
		(b)	$\frac{1}{3}$ oe nfww		M1 for $y(y+3)$ oe or $\frac{1}{2}(2y+1)(y+1)$ oe and B2 for $2y^2 + 6y = 2y^2 + 2y + y + 1$ oe or better or B1 for $(2y+1)(y+1) = 2y^2 + 2y + y + 1$ soi

(c) 25 niww 4 NI for
$$\frac{4!,80}{w-1}$$
 or $\frac{7!,80}{w-11}$
NI for $\frac{4!,80}{w-1} = \frac{7!,80}{2w-11}$ or
NI for $\frac{4!,80}{w-1} = \frac{7!,80}{2(w-11)} = 7!,80$
NI for $\frac{4!,80}{2w-11} = \frac{7!,80}{1.60}$ or $12w-11$ = 7!,80
NI for $\frac{4!,80}{2w-11} = \frac{7!,80}{1.60}$ or $12w-11$ = 7!,80
NI for $\frac{4!,80}{2w-11} = \frac{7!,80}{1.60}$ or $12w-11$ = 7!,80
NI for $\frac{4!,80}{2w-11} = \frac{7!,80}{1.60}$ or $12w-11$ = 7!,80
NI for $\frac{4!,80}{2w-11} = \frac{7!,80}{1.60}$ or $12w-11$ = 7!,80
NI for $\frac{4!,80}{1.80+1} = \frac{7!,80}{1.60}$ or $12w-11$ = 7!,80
NI for $\frac{5!}{2w-11} = \frac{7!,80}{2n}$
NI for $\frac{5!}{2w-1} = \frac{7!,80}{2m}$
NI for $\frac{5!}{2w-1} = \frac{7!}{2w-1}$
NI for $\frac{5!}{2w-$

41 4 (a) ((1y-m)(1y+m) final answer
(b)
$$3x^2+5x-14 \text{ final answer} (3x-5)(x-1) \text{ or isw and B1 for $3x^2+6x-5x-10 \text{ soi}$
(c) $-2\pm \sqrt{2^2-4(3)(-7)}$
(c) $-2\pm \sqrt{2^2-4(3)(-7)}$
(d) (1) $\frac{1}{2}(x+4+3x+2)(x+1)=15$
 $4x^2+4x+6x+6=30$
(i) $12 (x+4+3x+2)(x+1)=15$
 $4x^2+5x-12=0$
(ii) $1.5 \text{ or } \frac{3}{2}, -4$
(iii) $1.5 \text{ or } \frac{3}{2}, -4$
(iii) $6.5 \text{ or } \frac{13}{2}$
(iii) $6.5 \text{ or } \frac{13}{2}$
(iii) $6.5 \text{ or } \frac{13}{2}$
(iv) $2x^2 - 4x + 2x + 4x + 6x + 6 = 30$
(iv) $2x^2 - 5x - 12 = 0$
(iv) $2x^2 + 5x - 12 = 0$
(iv) $2x^2 + 5x - 12 = 0$
(iv) $2x^2 + 5x - 12 = 0$
(iv) $1.5 \text{ or } \frac{3}{2}, -4$
(iv) $2x^2 + 2x + 3x + 3 = 15$
(iv) $2x^2 + 5x - 12 = 0$
(iv) $2x^2 + 5x - 12 = 0$
(iv) $5x^2 - 4(2x-12) \text{ or } \frac{x+5x^2+4(2x-12)}{2+2}$
(iv) $5x^2 - 4(2x-12) \text{ or } \frac{x+5x^2+4(2x-12)}{2} \text{ or } \frac{x+5x^2+4(2x-12)}{$$$

42 8 (a) 15 nfww
(b)
$$\frac{x+6}{x-2}$$
 nfww final answer
(c) $\frac{x+6}{x-2}$ nfww final answer
(d) $\frac{-7x-1}{x^2-1}$ or $\frac{-7x-1}{(x-1)(x+1)}$
final answer
(e) $\frac{x}{W^2+1}$ nfww final answer
(f) $\frac{-7x-1}{x^2-1}$ or $\frac{-7x-1}{(x-1)(x+1)}$
final answer
(h) $\frac{-7x-1}{x^2-1}$ or $\frac{-7x-1}{(x-1)(x+1)}$
(h) $\frac{-7x-1}{x^2-1}$ or $\frac{-7x-1}{x^2-1}$
(h) $\frac{-7x-1}{x^2-1}$ or $\frac{-7x-1}{x^2$

44 2	(a)	(i) 5	1	
		(ii) $\frac{1}{2}$ oe	1	
		2		
		(iii) $\frac{5}{3}$ oe	2	M1 for $2^{3x} = 2^5$ oe or better
		3		or SC1 for either denominator or numerator
				of index correct in final answer
		(iv) $-\frac{2}{3}$ oe	2	M1 for $3^{3x} = 3^{-2}$ oe or better or
		3 3 3		$\left(\frac{1}{3}\right)^{-3x} = \left(\frac{1}{3}\right)^2$ or better
		120 STILL	and a	$\left(\frac{1}{3}\right)^{-1} \left(\frac{1}{3}\right)^{-1}$ or better
				or SC1 for $\frac{2}{3}$ or any negative index
(b))	(y-10)(y+3) seen	B2	B1 for $y(y-10) + 3(y-10) = 0$
				or $y(y+3) - 10(y+3) = 0$ or for $(y+a)(y+b) = 0$ where $ab = -30$
				or $a + b = -7$
		10 and – 3 final answers	B1	or for $y - 10 = 0$ and $y + 3 = 0$
45 2	(a)		2	12
		$x > \frac{12}{5}$ oe final answer		B1 for $\frac{12}{5}$ oe in answer with incorrect or no
				sign or M1 for one correct step e.g. $5x > 9 + 3$
	b) (i)	(y-6)(x+3) final answer	2	M1 for $y(x+3) - 6(3+x)$ or $x(y-6) + 3(y-6)$
	(ii)	8(x+3y)(x-3y) final answer	3	M2 for $2(2x+6y)(2x-6y)$ or
				(8x + 24y)(x - 3y) or $(8x - 24y)(x + 3y)or 4(2x - 6y)(x + 3y) or 4(2x + 6y)(x - 3y)$
				or $(4x - 12y)(2x + 6y)$ or $(4x + 12y)(2x - 6y)$ or M1 for $8(x^2 - 9y^2)$ or $(x + 3y)(x - 3y)$
			Thursday 12	
(c)		$r = \frac{1}{p+7}$ final answer nfww	4	M1 removes fraction correctly M1 collects terms in r
				M1 removes r as a factor from their terms in
		L'		<i>r</i> M1dep divides by bracket to leave <i>r</i> and
				denominator simplified
		www.Q8	M	aths.com

_	<u> </u>			
46 7	(a) (i)	$\frac{12}{x-1} - \frac{10}{x} = 0.5 \text{ oe}$	M2	M1 for $\frac{12}{x-1}$ or $\frac{10}{x}$
		12x - 10(x - 1) = 0.5x(x - 1) or better Brackets expanded	M1	FT $\frac{10}{x} - \frac{12}{x-1} = 0.5$ only
		Brackets expanded $x^2 - 5x - 20 = 0$ with no errors or omissions seen	A1	Dep on M3 and brackets expanded
	(ii)	$\sqrt{(-5)^2 - 4(1)(-20)}$ or better p = -(-5), r = 2(1) or better	B1	Seen anywhere or $(x - \frac{5}{2})^2$ oe
		p = -(-5), r = 2(1) or better	B1	Must be in the form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$
		Silling Boo		or for $\frac{5}{2} + \sqrt{\left(\frac{5}{2}\right)^2 + 20}$ or $\frac{5}{2} - \sqrt{\left(\frac{5}{2}\right)^2 + 20}$
		– 2.62, 7.62 final answers	B1B1	SC1 for - 2.6 or - 2.623 to - 2.624 and 7.6 or 7.623 to 7.624 or -2.62 and 7.62 seen in working or answers 2.62 and - 7.62
	(iii)	1 [hr] 49 [mins]	2FT	FT $12 \div (their + ve root - 1)$ or $0.5 + 10 \div (their 7.62)$ in hrs and mins, rounded to nearest min M1 for $12 \div (their + ve root - 1)$ or $0.5 + 10 \div (their 7.62)$
	(b) (i)	2.5	1	
	(ii)	1312.5 final answer	3	M2 for any complete correct method e.g $25 \times 10 \div 2 + 45 \times 25 + 5 \times 25 \div 2$ M1 for any correct method for a relevant area under the graph
47	6(a)(i)	-7x + 55 final answer	2	M1 for $8x + 20$ or $-15x + 35$ or answer $-7x + k$ or $kx + 55$
	6(a)(ii)	$x^2 - 14x + 49$ final answer	2	M1 for 3 of $x^2 - 7x - 7x + 49$
	6(b)(i)	-18 WWW. Q8	3 M	M1 for a correct first step ie correctly multiplying by 3 or correctly dividing by 2 or for correctly subtracting 5 M1 for correctly reaching $ax = b$ from <i>their</i> first step
	6(b)(ii)	15	3	M2 for $6x - 4x = 21 + 9$ oe or M1 for $6x - 21$ or correct division by 3 or for correctly reaching $ax = b$ from <i>their</i> first step
	6(b)(iii)	5 and –5	3	B2 for 5 or -5 or M1 for $[x^2 =] (74 + 1) \div 3$ or better

48	2(a)	2	2	M1 for $11n - 2n = -7 - 15$ or better
48	3(a)	$-2.75 \text{ or } -2\frac{3}{4}$	Z	M1 for $11x - 3x = -7 - 15$ or better
	3(b)(i)	(x + 11)(x - 2) final answer	2	M1 for $(x + a)(x + b)$ where $ab = -22$ or $a + b = 9$
	3(b)(ii)	-11 and 2 final answer	1	
	3(c)	$[x] = \frac{2a}{2-y}$ or $\frac{-2a}{y-2}$ nfww	4	M1 for clearing the <i>x</i> term in the denominator M1 for correctly removing the bracket (expand or divide by 2)
		final answer	and the second s	M1 for factorising to obtain single x term M1 for <i>their</i> factor and division Incorrect answer scores 3 out of 4 maximum
	3(d)	$\frac{x}{x+6}$ nfww final answer	3	M1 for $x(x-6)$ M1 for $(x+6)(x-6)$
49	5(a)(i)	(2n+m)(m-3) final answer	2	M1 for $m(2n+m)-3(2n+m)$ or 2n(m-3)+m(m-3)
	5(a)(ii)	(2y-9)(2y+9) final answer	1	
	5(a)(iii)	(t-4)(t-2) final answer		B1 for $(t-4)(t-2)$ seen and spoiled or M1 for $t(t-2) - 4(t-2)$ or $t(t-4) - 2(t-4)$ or $(t+a)(t+b)$
	5(b)	$[x=]\frac{2m}{k+1}$	4	where $a + b = -6$ or $ab = +8$ M1 for $xk = 2m - x$ or $k = \frac{2m}{x} - 1$ M1 for $xk + x = 2m$ or $k + 1 = \frac{2m}{x}$
	5(c)	correctly eliminating one variable	M1	M1 for $x(k+1) = 2m$
		[<i>x</i> =] 6	A1	
		[<i>y</i> =] -2	A1	If 0 scored SC1 for 2 values satisfying one of the original equations or SC1 if no working shown, but 2 correct answers given
	5(d)(i)	3m-4(m+4) = 6m(m+4)	M1	or $\frac{3m-4(m+4)}{m(m+4)}$ [= 6] oe
		$3m - 4m - 16 = 6m^2 + 24m$	M1	removes brackets correctly
		$6m^2 + 25m + 16 = 0$	A1	with no errors or omissions

	5(d)(ii)	$-25\pm\sqrt{(25)^2-4(6)(16)}$	2	B1 for $\sqrt{(25)^2 - 4(6)(16)}$
		or 2×6		or B1 for $\left(m + \frac{25}{12}\right)^2$
		$\frac{-25}{12} \pm \sqrt{\left(\frac{25}{12}\right)^2 - \frac{16}{6}}$		and if in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$
				B1 for $p = -25$ and $r = 2(6)$
		-0.79 and -3.38	2	B1 for each
		final ans cao		SC1 for -0.8 and -3.4
		the set		or for -0.78 and -3.37 or -0.789 and -3.377 or 0.79 and 3.38 or -0.79 and -3.38 seen in working
50	4(a)(i)	$243p^{10}$ final answer	2	B1 for answer $243p^k$ or kp^{10} ($k \neq 0$)
	4(a)(ii)	$9xy^4$ final answer	2	B1 for answer with two correct elements
				in correct form of expression
	4(a)(iii)	$\frac{m^2}{2}$ final answer	1	
		$\frac{1}{25}$ final answer		
	4(b)	10	4	B2 for $x = 8$ or for [length of rectangle =] 31
				or M1 for $5x - 9 = 3x + 7$ oe or better
				M1 for $\frac{310}{310}$
				$(3 \times theirx + 7)$
				or $\frac{310}{(5 \times theirx - 9)}$
				Alt method using simultaneous eqns M1 for $5xw - 9w = 310$
				and $3xw + 7w = 310$ M1 for equating coefficients of xw
				M1 for subtraction to eliminate term in
				xw
		Le la		
		uuu. Q8	M	aths.com
				1

51	6(a)	$x^2 + 4x - 21$ final answer	2	B1 for three of x^2 , $+7x$, $-3x$, -21
	6(b)(i)	$5q^2(3p^2-5q)$ final answer	2	B1 for $5(3p^2q^2 - 5q^3)$ or $q^2(15p^2 - 25q)$ or
				$q(15p^2q - 25q^2)$ or $5q(3p^2q - 5q^2)$ or for correct answer seen
			_	
	6(b)(ii)	(2g+5k)(2f+3h) final answer	2	B1 for $2g(2f + 3h) + 5k(2f + 3h)$ or 2f(2g + 5k) + 3h(2g + 5k)
				or for correct answer seen
	6(b)(iii)	(9k+m)(9k-m) final answer	2	M1 for $(9 + m)(9 - m)$
			and a start	or for correct answer seen
	6(c)	5.5	4	M1 for $5 \times 3(x-4) + x + 2 = 5 \times 6$
				and the second second
				M1 for $15x - 60 + x + 2 = 30$ FT <i>their</i> first step or $3x - 12 + \frac{x+2}{5} = 6$
				$51 - 51 - 12 + \frac{1}{5} = 0$
				If M0M0, SC1 for $3x - 12 + x + 2 = 30$ oe
				M1dep for $16x = 88$ FT <i>their</i> previous steps
52	9(a)(i)	$(x+4)^2 - 25$	2	B1 for $(x+k)^2 - 9 - (their k)^2$ or $(x+4)^2 - h$
				or $k = 4$
	9(a)(ii)	$x + 4 = [\pm] 5$	M1	FT their (a)(i)
		–9 and 1	A1	
	9(b)	[<i>b</i> =] 7	3	B1 for [<i>b</i> =] 7
		[c =] -3		M1 for $b^2 - 4c = 61$
	9(c)(i)(a)	Correct sketch	2	B2 for correct quadratic curve with min touching <i>x</i> -axis
				or B1 for parabola vertex downwards
				and an
	9(c)(i)(b)	Correct sketch	2	B2 for correct straight line intersecting curve on <i>y</i> -axis
		<i>www.</i> 20		or B1 for straight line with positive gradient and
				positive y-intercept

53	8(a)	ab(3a - b) final answer	2	B1 for $a(3ab - b^2)$ or $b(3a^2 - ab)$ or $ab(3a - b)$ seen
	8(b)	x > 7.5 final answer	2	B1 for $12+3 < 5x - 3x$ oe
	8(c)	$27x^6y^{12}$	2	B1 for two of 27, x^6 and y^{12} correct
	8(d)	0.5 or $\frac{1}{2}$	3	M2 for $4 = 6x + 2x$ or better
		2		or M1 for $2(2-x) = 6x$ oe
	8(e)	$2x^3 + 5x^2 - 23x + 10$ final answer	3	B2 for correct expansion of three brackets unsimplified
				B1 for correct expansion of two brackets with at least 3 terms correct
	8(f)(i)	$200\left(1+\frac{r}{100}\right)^2 = 206.46$ oe	M1	P2CT I
		$1 + \frac{2r}{100} + \frac{r^2}{100^2}$ oe	M1	
		$r^2 + 200r - 323 = 0$	A1	Correct solution reached with no errors or omissions seen
				If 0 scored, SC1 for $200(n)^2 = 206.46$
	8(f)(ii)	$-200 + \sqrt{200^2 - 4(1)(-323)}$	B2	B1 for $\sqrt{200^2 - 4(1)(-323)}$ or $(r + 100)^2$
		2×1		
				B1 for $\frac{-200 + \sqrt{q}}{2 \times 1}$ or $r = \sqrt{323 + 100^2} - 100$
				OR
				B2 for $100\left(\sqrt{\frac{206.46}{200}} - 1\right)$
				or B1 for $\sqrt{\frac{206.46}{200}}$
		1.60 cao final answer	B1	. 200
		1.00 cao miai answei	DI	Cution .
		uuu. Q8	M	aths.com