Coordinate Geo metry \&

 Differ entiation| 1 | (a) (i)
 (ii)
 (b) (i)
 (ii)
 (c) (i)
 (ii) | $-\frac{1}{2} x+2$ oe $\begin{aligned} & 16 \\ & a^{2} \end{aligned}\left[+\frac{0^{[2]}}{b^{2}}\right]=1 \text { or } \frac{4^{2}}{a^{2}}\left[+\frac{0^{[2]}}{b^{2}}\right]=1$
 and $a^{[2]}=4^{[2]}$
 $\left[\frac{0^{[2]}}{a^{2}}\right]+\frac{4}{b^{2}}=1$ or $\left[\frac{0^{[2]}}{a^{2}}\right]+\frac{2^{2}}{b^{2}}=1$ and $b^{[2]}=2^{[2]}$
 1.73 or 1.732. or $\sqrt{3}$
 81.8 or 81.78 to 81.79
 8π final answer
 72π final answer | \qquad
 1
 3
 3
 1
 2FT | $\mathbf{S C 2}$ for $y=-\frac{1}{2} x+c$ oe or SC1 for $y=k x+2$ oe, $k \neq 0$ or $\text { M1 for [gradient }=]_{4}^{-2}$
 and M1 for substituting $(4,0)$ or $(0,2)$ into $y=($ their $m) x+c$
 M2 for $\frac{k^{2}}{4}=\frac{3}{4}$ or better or M1 for $\frac{2^{2}}{16}+\frac{k^{2}}{4}=1$ oe
 M2 for $2 \times \tan ^{-1}\left(\frac{\text { their } \sqrt{3}}{2}\right)$ oe or M1 for $\tan =\frac{\text { their } \sqrt{3}}{2}$ oe
 FT their (c)(i) $\times 9$ in terms of π M1 for area factor of 3^{2} or 9 or $[$ new $a]=12$, $[$ new $b]=6$ |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 9
 (a)
 (b)
 (c) | $19[.0]$ or $18.97 .$. nfww $[y=] 3 x+1$
 $y=3 x-5$ oe | 3
 3
 2FT | M2 for $\sqrt{(4--2)^{2}+(13--5)^{2}}$ oe or M1 for $(4--2)^{2}+(13--5)^{2}$ oe
 B2 for answer $[y=] 3 x+c$ oe or answer $k x+1(k \neq 0)$
 or M1 for $\frac{13--5}{4--2}$ oe or 3
 and M1 for correct substitution of $(-2,-5)$ or $(4,13)$ into $y=($ their $m) x+c$ oe
 FT their gradient from (b)
 M1 for $y=m x-5$ with other $m, m \neq 0$ or $y=\{$ their gradient from (b) $\} x+c$
 If 0 scored, SC1 for answer $3 x-5$ |

9	10(a)(i)	$\begin{aligned} & A(-4,0) \\ & B(1,0) \\ & C(0,-4) \end{aligned}$ $2 x+3[\pm 0]$ final answer $y=7 x-8 \text { oe }$ Correct sketch 125.5 or 125.53 to 125.54 and 305.5 or 305.53 to 305.54	2 3 2 3	B3 for A and B correct Or B2 for B $(-4,0)$ and $A(1,0)$ Or B1 for $(x+4)(x-1)$ or for $\frac{-3 \pm \sqrt{3^{2}-4 \times 1 \times-4}}{2} \text { oe }$ and B1 for A or B correct B1 for $C(0,-4)$ OR SC2 for $-4,1$ and -4 in correct positions on the graph B1 for answer $2 x+c$ or for $a x+3, a \neq 0$ or for correct answer seen B2 for answer $7 x-8$ OR M1 for [gradient =] 2(2) +3 FT their part (a)(ii) of the form $a x+b$ M1dep for substitution of $(2,6)$ into $y=$ their $m x+c$ oe B1 for one correct section out of 4 OR B1 for two properties correct from - Crosses x-axis at $(0,0)(180,0)$ and $(360,0)$ only - Correct curvature in each section of 90° - Asymptotes at $x=90$ and $x=270$ B2 for one correct angle or B1 for -54.5 or $-54.46 \ldots$ or for 2 angles with a difference of 180 .
10	$\begin{aligned} & 7(\mathrm{a})(\mathrm{i}) \\ & \\ & 7(\mathrm{a})(\mathrm{ii}) \\ & \\ & 7 \text { (a)(iii) } \end{aligned}$	$(8-x)(3+x)$ $\begin{aligned} & {[a=]-3} \\ & {[b=] 8} \\ & {[\mathrm{c}=] 24} \end{aligned}$ 8		```M1 for \(8(3+x)-x(3+x)\) or \(3(8-x)+x(8-x)\) or \((a-x)(b+x)\) where \(a b=24\) or \(a-b=5\) FT their (a)(i) for \(a\) and \(b\) B1FT for each of \(a\) and \(b\) or both correct but reversed B1 for [\(c=\)] 24 M2 for \(5-2 x\) or M1 for \(-2 x\) or \(5-k x, k \neq 0\)```

| $7(\mathrm{~b})(\mathrm{i})$ | Correct sketch:
 positive cubic shape and max on the
 y-axis or to the right of y-axis
 with one root at $(-1,0)$
 and
 turning point at $(3,0)$
 and
 y-intercept at $(0,9)$ all labelled
 $x^{3}-5 x^{2}+3 x+9$ final answer | $\mathbf{B} 1$ for positive cubic shape with max on
 the y-axis or to the right of y-axis
 $\mathbf{B 1}$ for root at $(-1,0)$
 $\mathbf{B 1}$ for turning point at $(3,0)$
 $\mathbf{B 1}$ for y-intercept $(0,9)$
 If 0 score $\mathbf{S C 1}$ for all three intercepts on |
| :--- | :--- | :--- | :--- |
| 7(b) | | |

