Coordinate Geometry & Differentiation

www.Q8Maths.com

$$\begin{bmatrix} 1 \\ 9 \\ (a) & (b) \\ -\frac{1}{2}x + 2 \text{ oc} \\ \end{bmatrix} \begin{bmatrix} 3 \\ -\frac{1}{2}x + 2 \text{ oc} \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{2}x + 2 \text{ oc} \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -\frac{1}{2}x + 2 \text{ oc} \\ 0 \end{bmatrix} \begin{bmatrix} -\frac{1}{2}x + 2 \text{ oc} \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -\frac{1}{2}x + 2 \text{ oc} \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -\frac{1}{2}x + 2 \text{ oc} \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -\frac{1}{2}x + 2 \text{ oc} \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -\frac{1}{2}x + 2 \text{ oc} \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -\frac{1}{2}x + 2 \text{ oc} \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -\frac{1}{2}x + 2 \text{ oc} \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -\frac{1}{2}x + 2 \text{ oc} \\ 0 \end{bmatrix} \end{bmatrix} \begin{bmatrix} -\frac{1}{2}x + 2 \text{ oc} \\ 0 \end{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} -\frac{1}{2}x + 2 \text{ oc} \\ 0 \end{bmatrix}$$

		1 13 .		1
	(d)	$y = -\frac{1}{3}x + \frac{13}{3}$ oe isw	5	B2FT for $-\frac{1}{3}x + c$ (<i>c</i> can be numeric or
				algebraic) FT $-1/$ <i>their</i> gradient from (b)
				or M1 for $-1/$ their gradient from (b) soi
				and
				and B1 for [midpoint of $AB =$] (1, 4)
				and M1 for substitution of $(1, k)$ or $(k, 4)$ into a linear equation
3	7(a)	(-0.5, 3)	2	B1 for one correct value
	7(b)	[y =] -2x + 2 final answer	3	M1 for $\frac{-2-8}{2-3}$ or better
		Sill Bo		M1 for substitution of $(-3, 8)$ or $(2, -2)$ or <i>their</i> midpoint into $y = mx + c$ with <i>their</i> m
	7(c)	y = -2x + 7 oe	2FT	FT their (b) M1 for $y = (their-2)x + k \ (k \neq 2)$ or $y = kx + 7 \ (k \neq 0)$
				If zero scored, SC1 for $(their - 2)x + 7$
	7(d)	x - 2y + 9 = 0 or $2y - x - 9 = 0$ oe	4	B3 for any correct equivalent in wrong form Or M2 for $y = \frac{1}{2}x + k$ oe (FT negative reciprocal of <i>their</i> gradient in (b)) or M1 for grad = $\frac{1}{2}$ (FT negative reciprocal of <i>their</i> gradient in (b))
				M1 for substitution of (1, 5) into y = mx + c oe with <i>their m</i>
4	4(a)(i)	1.5 oe	1	
	4(a)(ii)	(0, 2)	1	
	4(b)(i)	y = -2x + 6 oe final answer	3	B2 for $y = -2x + c$ oe
				or $y = mx + 6$ or $m \neq 0$
		T		or for answer $-2x+6$
				or B1 for [gradient =] $-\frac{6}{3}$ oe or $c = +6$ soi
	4(b)(ii)	y = 0.5x - 1.5 oe final answer	3	B1 for [gradient =] – 1 divided by <i>their</i> gradient from (b)(i) evaluated soi M1 for substitution of (9, 3) into y = (their m)x+c seen in working
	4(c)(i)	12.6 or 12.64 to 12.65	3	M2 for $\sqrt{(84)^2 + (5-1)^2}$ oe
				or M1 for $(84)^2 + (5-1)^2$ oe
	4(c)(ii)	(2, 3)	2	B1 for each

5	8(a)(i)	Correct sketch	2	B1 for correct shape but inaccurate
	8(a)(ii)	Rotational [symmetry] order 2 [centre] (180, 0)	2	B1 for rotational [symmetry]
	8(b)	48.6 or 48.59 to 48.60 and 131.4 or 131.40 to 131.41	3	B2 for 48.6 or 48.59 to 48.60 or 131.4 or 131.40 to 131.41 or M1 for $\sin x = 0.75$ or better
				If 0 scored, SC1 for two answers adding to 180
	8(c)(i)	$(x+5)^2 - 11$	2	M1 for $(x + 5)^2 + k$ or $(x + their 5)^2 + 14 - (their 5)^2$ or $a = 5$
	8(c)(ii)	Sketch of U-shaped parabola with a minimum indicated at $(-5, -11)$ with no part of graph in 4 th quadrant	3	FT <i>their</i> $(x + 5)^2 - 11$ provided in that form B1 for U shape curve B1FT for turning point at $(-5, k)$ or (k, -11)
6	10(a)(i)	15.7 or 15.65	3	M2 for $(4-10)^2 + (4-3)^2$ oe or M1 for $(-4-10)^2 + (4-3)^2$ oe
	10(a)(ii)	$\frac{-10-4}{43}$ [= -2] oe	M1	
		10 = -2(-3) + c Or $-4 = -2(4) + c$ and correct completion to $y = -2x + 4$	A1	
	10(a)(iii)	$y = \frac{1}{2}x + \frac{11}{4}$ oe	4	M1 for grad = $\frac{1}{2}$ soi M1 for [midpoint =] ($\frac{1}{2}$, 3) M1 for substitution of (1/2, 3) into <i>their</i> y = mx + c oe
	10(b)(i)	$\left(-\frac{1}{3}, -\frac{22}{27}\right)$ oe and (-5, 50)		B2 for $3x^2 + 16x + 5$ Or B1 for one correct M1 for derivative = 0 or <i>their</i> derivative = 0
				M1 for $[x =] -\frac{1}{3}$ and $[x =] -5$ B1 for $-\frac{22}{27}$ and 50
	10(b)(ii)	$\left(-\frac{1}{3}, -\frac{22}{27}\right)$ minimum (-5, 50) maximum with correct reasons	3	B2 for one correct with reason or M1 for correct attempt e.g. 2 nd derivatives, gradients or sketching
			//(

7	10(a)(i)	5	2	M1 for $(-1)^4 - 4(-1)^3$
	10(a)(ii)	(0, 0) and (3, –27)	6	B2 for $4x^3 - 12x^2$ [= 0] or B1 for $4x^3$ or $12x^2$
				AND
				M1 for derivative = 0 or <i>their</i> derivative = 0 M1 for $4x^2(x-3)[=0]$ B1 for [x =] 0 and $[x =] 3$ or $[y =] 0$ and $[y =] -27or for one correct coordinate pair$
	10(b)	[p =] 11 [q =] 5	2	B1 for each or M1 for $\frac{dy}{dx} = px^{p-1} + 2qx^{q-1}$
8	9(a)(i)	$\frac{3}{8}$	2	M1 for $8y = 3x + 20$ or better
	9(a)(ii)	(0, 2.5) oe	1	
	(b)(i)	15.6 or 15.62	3	M2 for $\sqrt{(93)^2 + (-2-8)^2}$ oe seen or M1 for $(93)^2$ or $(-2-8)^2$ oe seen
	9(b)(ii)	$y = -\frac{5}{6}x + 4 \text{ oe}$	3	M1 for gradient $\frac{-2-8}{93}$ oe M1 for substituting (6, -1) into a linear
				equation oe
	9(b)(iii)	$y = \frac{6}{5}x - \frac{3}{5}$ oe	4	M1 for gradient $-1 / their\left(-\frac{5}{6}\right)$ B1 for midpoint at (3, 3) M1 for <i>their</i> midpoint substituted into
				$y = their m \times x + c$ oe
		uuu. Q8	M	athe com
			/ (

	10.00			
9	10(a)(i)	A(-4, 0) B(1, 0) C(0, -4)	4	B3 for A and B correct Or B2 for B $(-4, 0)$ and A $(1, 0)$
				Or B1 for $(x + 4)(x - 1)$ or for $\frac{-3 \pm \sqrt{3^2 - 4 \times 1 \times -4}}{2}$ oe
				2 and B1 for A or B correct
				B1 for C(0, -4)
				OR
				SC2 for -4, 1 and -4 in correct positions on the graph
	10(a)(ii)	$2x + 3 [\pm 0]$ final answer	2	B1 for answer $2x + c$ or for $ax + 3$, $a \neq 0$ or for correct answer seen
	10(a)(iii)	y = 7x - 8 oe	3	B2 for answer $7x - 8$
				OR
				M1 for [gradient =] $2(2) + 3$ FT <i>their</i> part (a)(ii) of the form $ax + b$ M1dep for substitution of (2, 6) into y = their mx + c oe
	10(b)(i)	Correct sketch	2	B1 for one correct section out of 4 OR
				 B1 for two properties correct from Crosses <i>x</i>-axis at (0, 0) (180, 0) and (360, 0) only Correct curvature in each section of 90° Asymptotes at <i>x</i> = 90 and <i>x</i> = 270
	10(b)(ii)	125.5 or 125.53 to 125.54	3	B2 for one correct angle
		and 305.5 or 305.53 to 305.54		or B1 for -54.5 or -54.46 or for 2 angles with a difference of 180.
10	7(a)(i)	(8-x)(3+x)	2	M1 for $8(3 + x) - x(3 + x)$ or $3(8 - x) + x(8 - x)$ or $(a - x) (b + x)$ where $ab = 24$ or a - b = 5
	7(a)(ii)	[a =] -3 [b =] 8 [c =] 24	3	FT <i>their</i> (a)(i) for a and b B1FT for each of a and b or both correct but reversed B1 for $[c =]$ 24
	7(a)(iii)	8	3	M2 for $5 - 2x$ or M1 for $-2x$ or $5 - kx$, $k \neq 0$

7(b)(i)	Correct sketch: positive cubic shape and max on the y-axis or to the right of y-axis with one root at $(-1, 0)$ and turning point at $(3, 0)$ and y-intercept at $(0, 9)$ all labelled	4	 B1 for positive cubic shape with max on the <i>y</i>-axis or to the right of <i>y</i>-axis B1 for root at (-1, 0) B1 for turning point at (3, 0) B1 for <i>y</i>-intercept (0, 9) If 0 score SC1 for all three intercepts on axes identified
7(b)(ii)	$x^3 - 5x^2 + 3x + 9$ final answer	3	B2 for correct expansion of three brackets unsimplified
	50 (ji)		B1 for correct expansion of two brackets with at least 3 terms correct
			1 allas
	uuu. Q8	M	aths.com