Functions

wwu

3	$8 \quad$ (a) (b)	(i) 3 (ii) 4 (iii) $4 x-3$ final answer (iv) $\frac{x+1}{2}$ oe final answer (v) $-\frac{1}{2}$ and $1 \frac{1}{2}$ (i) $y=\frac{16}{x}$ oe (ii) 32	1 1 2 2 4 2 1	M1 for $2(2 x-1)-1$ M1 for $x=2 y-1$ or $\frac{y+1}{2}$ oe or $\frac{f(x)+1}{2}$ oe B1 for $(2 x-1)^{2}$ soi M2 for $2 x-1= \pm 2 \quad$ M1 for $4 x^{2}-2 x-2 x+1$ or M1 for $2 x-1=2$ and M1 for $(2 x+1)(2 x-3)$ or correct substitution in formula soi by $(4 \pm \sqrt{ } 64) / 8$ Condone $y=k / x$ and $k=16$ stated M1 for $y=\frac{k}{x}$ oe
4	(b) (c) (d)	(i) 11 (ii) 22 $\frac{x+1}{4}$ oe final answer $16 x^{2}-8 x+7$ final answer 0.5 or $1 / 2$ www	2 3 3	M1 for $x+1=4 y$ or $\frac{\mathrm{g}(x)+1}{4}$ or $\frac{y+1}{4}$ M1 for $6+(4 x-1)^{2}$ and B1 for $16 x^{2}-4 x-4 x+1$ or better seen M2 for $16 x-4-1=3$ or better or M1 for $4(4 x-1)-1(=3)$ Alt method M2 allow $\mathrm{g}^{-1} \mathrm{~g}^{-1}(3)$ complete method or M1 for $\mathrm{g}(x)=\mathrm{g}^{-1}(3)$
5	7 (a) (b) (c) (d) (e)	$-3,-4.25,-3$ 10 correct points plotted Smooth curve through their 10 points and correct shape Two separate branches (i) 0.7 to 0.85 (ii) Any value of k such that $k \leqslant-3$ and must be consistent with their graph $y=5 x$ drawn -0.6 to $-0.75,0.55$ to 0.65 Tangent drawn at $x=-2$ y change / x change attempt 2.7 to 4.3	1, 1, 1 P3ft C1 B1ft 1 1 ft L1 1, 1 T1 M1 A1	Allow -4.2 or -4.3 for -4.25 P2ft for 8 or 9 correct P1ft for 6 or 7 correct Correct shape not ruled, (curves could be joined) Indep but needs two 'curves' on either side of y axis - 1 each extra ft consistent with their graph (If curves are joined then $k=-3$ only) Ruled and long enough to meet curves Indep - 1 each extra Must be a reasonable tangent, not chord, no clear daylight Depend on T and uses scales correctly. Mark intention - allow one slight slip e.g. sign error from coords but not scale misread If no working shown and answer is out of range - check their tangent for method Answer in range gets 2 marks after T1 earned

\begin{tabular}{|c|c|c|c|c|}
\hline 8 \& 4 (a)
(b)

(c)
(d) \& $\left\{\begin{array}{l}4 \\ -5.8 \text { or }-5.75 \text { or }-5.7 \\ -2 \\ 10 \text { correct plots } \mathrm{ft} \\ \\ \text { Correct shape curve through } 10 \text { points } \\ \text { (condone } 2 \text { points slightly missed) } \\ \text { Two separate branches not crossing } y \text {-ax } \\ -2.5 \text { to }-2.3 \\ -0.5 \text { to }-0.4 \\ 2.75 \text { to } 2.9 \\ \text { Correct tangent drawn at } x=-2 \\ -4 \text { to }-2.5\end{array}\right.$ \& 1
1
1
P 3 ft

$\mathrm{C} 1 \mathbf{f t}$
s
B 1

1
1
1

2 \& | ft from their values in (a) generous with $(-0.25,12.1)$ |
| :--- |
| P 2 for 8 or 9 correct plots ft or P1 for 6 or 7 correct plots ft ft their points if shape correct - ignore anything between -0.25 and 0.25 |
| C 1 and B 1 are independent |
| Allow slight daylight |
| Dep on T1 |
| M1 Rise/Tread attempt Dep on T1 or SC1 for answer in range 2.5 to 4 after T1 |

\hline 9 \& | $5 \text { (a) }$ |
| :--- |
| (b) |
| (c) | \& | $9.11,4.25,2, \ldots, 2,4.25,9.11$ |
| :--- |
| 12 points plotted |
| Smooth curve through 12 points Two branches, neither touching y-axis |
| (i) $x=0$ |
| (ii) tangent at -1.5 -3 to -1.8 |
| (iii) -1.7 to $-1.55,-0.7$ to -0.55 , 0.55 to $0.7,1.55$ to 1.7 |
| (iv) $y=2 x$ drawn to meet graph twice 1 1.8 to 1.9 | \& | 3 |
| :--- |
| 5 |
| 1 |
| T1 |
| 2 |
| 2 |
| B1 |
| B1 |
| B1 | \& | B2 for 4 or 5 correct and B1 for 2 or 3 correct |
| :--- |
| P3, ft their (a), P2 for 10 or 11 points, P1 for 8 or 9 . |
| C1 correct shape ft their points shape same. Ignore anything between -0.5 and 0.5 . |
| B1 independent |
| Dependent on tangent |
| M1(also dep on T1) for attempt at rise/run or SC1 for 1.8 to 3 |
| B1 for 1 or more correct |

\hline 10 \& $9(\mathrm{a})$
(b)

(c)
(d) \& (i) $\quad 81$
(ii) 8.5
$\frac{x-1}{3} \mathrm{oe}$
$3 x^{2}+12 x+13$ final answer
$(x=) \frac{-3 \pm \sqrt{3^{2}-4(1)(1)}}{2(1)}$

$-2.62,-0.38$ final answer \& | 2 2 |
| :--- |
| 2 |
| 2 |
| 2 |
| 1,1 | \& | B1 for $(f(2)=) 7$ |
| :--- |
| B1 for $(f(0.5)=) 2.5$ |
| M1 for $(x=) \frac{y-1}{3}$ or $(x=) \frac{\mathrm{f}(x)-1}{3}$ or $3 y=x-1$ or $3 \mathrm{f}(x)=x-1$ or -1 then $\div 3$ in flowchart (must be clear) |
| M1 for $3(x+2)^{2}+1$ or better |
| B1 for $\sqrt{3^{2}-4(1)(1)}$ or better Seen anywhere If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ oe, B 1 for $p=-3$ and $r=2(1)$ or $\left(x+\frac{3}{2}\right)^{2} \quad$ B1 then $\sqrt{\frac{9}{4}-1}$ B1 If $0, \mathrm{SC} 1$ for -2.6 or -2.62 or $-2.618 \ldots$ and $-0.4(0)$ or -0.38 or -0.382 to -0.381 seen Answers only B1 B1 |

\hline
\end{tabular}

11	5	(a) $1,-1,3.5$ (b) 10 correct points plotted Smooth curve through at least 8 points and correct shape (c) $\begin{aligned} & -2.2 \text { to }-2.1 \\ & -0.65 \text { to }-0.45 \\ & 2.5 \text { to } 2.7 \end{aligned}$ (ii) $(k<)-4$ to -3.7 $(k>) 1.7 \text { to } 2$ (d) (i) Ruled line gradient 3 and y-intercept -2 over the range -1 to 3.5 (ii) $(a=)-12,(b=) 2$ (iii) 0.1 to 0.2 and 3.3 to 3.4 cao	1,1,1 P3ft C1ft 1ft 1ft 1ft 1ft 1ft 3 1,1 1,1	P2ft for 8 or 9 correct P1ft for 6 or 7 correct Allow points to be implied from curve Correct cubic shape, not ruled Correct or ft their x values If ft and more than 3 solns then 2 marks maximum Correct or ft their graph for y values at max and min After 0 scored SC1 for both correct but reversed B2 for correct but freehand or short or M1 for a ruled line of gradient 3 or passes through $(0,-2)$ (but not $y=-2$) After 0, M1 for $x^{3}-6 x-6 x-2+4(=0)$ or better
12	2	(a) (i) 39 (ii) $\frac{8}{x}+2$ or $\frac{8+2 x}{x}$ or $\frac{2(4+x)}{x}$ or $8 x^{-1}+2$ final answer (b) -2.5 oe (c) 2.2 oe (d) (i) $4 x-2=\frac{2}{x}+1$ At least 1 intermediate step and $4 x^{2}-3 x-2=0$ (ii) $\frac{-(-3) \pm \sqrt{(-3)^{2}-4(4)(-2)}}{2(4)}$ 1.18 and -0.43 cao	2 2 2 2 E1 B1 B1 B1B1	B1 for $(f(2)=) 6$ or 6^{2} seen or $(4 x-2)^{2}+3$ seen M1 for $4\left(\frac{2}{x}+1\right)-2$ M1 for $2+x=0.2 x$ oe or $\frac{2}{x}=0.2-1$ or better M1 for $\frac{2}{\frac{5}{3} \text { oe }}+1$ allow 1.66 to 1.67 for $5 / 3$ or $\frac{2}{2 / x+1}+1$ oe with these four terms No errors B1 for $\sqrt{(-3)^{2}-4(4)(-2)}$ or better (41) and in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ B1 for $-(-3)$ and 2(4) or better SC1 for 1.18 and -0.43 seen or 1.2 and -0.4 or $1.17 \ldots$ and $-0.425 \ldots$

13	7	(a) $8.7,-3.2,-10$ (b) 6 correct points plotted Smooth curve through 6 points and correct shape (c) Ruled tangent drawn at $x=2$ Rise/run (using correct scales) 3.4 to 4 (d) $k>1.85$ or $k>$ any value greater that 1.85 (e) (i) Correct ruled line for $-3 \leq x \leq 3$ (ii) -1.75 to -1.9 (f) (i) $x^{2}+\frac{1}{x}=x+2$ (ii) $(y=) x+2$	B3 P2ft C1ft T1 M1 A1 B1 B2 B1 B2 B1ft	8.66(..) or 8.67, $-3.24,-9.99$ if given to 2 dp B1 for each correct value P1ft for 5 or 4 correct $\mathbf{C 0}$ if curve crosses y-axis Not chord, allow slight daylight Dep T1 Accept \geq Ignore $k<$ any value greater than 1.85 SC1 for short ruled line or good freehand complete line or any ruled line grad -1 or ruled with y intercept of $1(\operatorname{not} y=1)$ B1 for $x^{2}-x-2+\frac{1}{x}=0$ oe seen or $1+x^{3}=x^{2}+2 x$ seen or their $a x+b$ numerical $a \neq 0$ and $b \neq 0$
14	2	(a) $0.5,4$ (b) 6 points plotted ft Correct shaped curve through 6 poin (exponential) (c) (i) Correct ruled line reaching both points (ii) $6 \div 3$ oe (iii) -0.8 to -0.6 (d) Tangent drawn at (1, 2) Rise/run attempt using correct scales 1.2 to 1.6 cao	$1+1$ P2 C1 L1 1 1 T1 M1 A1	P1 for 5 points Ignore to left of $x=-2$ Allow 'test' with a coordinate on the line (not 0,2) Dep on $\mathbf{L 1}$ Not chord, allow up to 1 mm daylight Dep on $\mathbf{T 1}$
15	8	(a) 243 (b) $\frac{1-x}{2}$ or $\frac{x-1}{-2}$ final ans (c) $\frac{-1 \pm \sqrt{1^{2}-4(1)(-1)}}{2(1)}$ $-1.62,0.62$ (d) $4 x^{2}-6 x+1$ final ans www3 (e) 9	2 2 B2 B1B 3 1	B1 for $(g(-2)=) 5$ seen or $3^{(1-2 x)}$ M1 for $x=1-2 y$ or $x=(1-y) / 2$ B1 for $\sqrt{1^{2}-4(1)(-1)}$ or better $(\sqrt{5})$ seen anywhere If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ B1 for $p=-1$ and $r=2(1)$ SC1 for -1.62 and 0.62 seen or -1.6 or -1.618 .. and 0.6 or $0.618 \ldots$ M1 for $(1-2 x)^{2}+(1-2 x)-1$ or better and B1 for $(1-2 x)^{2}=1-2 x-2 x+4 x^{2}$ or better

20	(b) (c) (d)	(i) $14 \quad-5.5 \quad 20$ (ii) 10 correct points plotted Smooth curve through all 10 points correct shape -4.8 to $-4.6,-0.4$ to $-0.2,3$ to 3.1 www Tangent drawn at $x=-4$ Attempts y step $/ x$ step with correct scales 6 to 11 (i) Ruled line through $(1,15)$ and $(3,-5)$ (ii) 2.5 to 2.7	$1+1+1$ P3 ft C1 $1+1+1$ T1 M1 A1 3 1	P2 ft for 8 or 9 correct P1 ft for 6 or 7 correct Centre of point must touch line if exact or be in correct square (including boundaries) Within 1 mm radially of potted points. In absence of plot[s], allow curve to imply $\operatorname{plot}[\mathrm{s}]$ No ruled sections After 0 scored, SC1 for $y=2$ soi Penalise first occurrence of co-ord answers in (b) and (d)(ii) Not chord or daylight Dep on $\mathbf{T 1}$ or close attempt at tangent at $x=-4$ Dep on M1 only L2 for short line but correct or freehand full length correct line. L1 for ruled or freehand line through $(0,10)$ (but not $y=10$) or for ruled line with gradient -5 isw for extra solns from wrong curve/line
21		(i) Tangent drawn at $x=2.5$ (ii) 1.55 to 2.2 1.42 to 1.45 and 2.8 to 2.82 (i) $4.4,2.5,1.5$ (ii) 6 correct points plotted curve through all 6 points and correct shape (iii) 0.75 to 0.9 1.6 to 1.7 2.6 to 2.7	2dep 1,1 2 P2ft C1 1 1 1	reasonable tangent at correct point, no daylight, or chord, crossing x-axis between 1.7, 2.0 when extended if necessary Dependent on correct tangent or close attempt at tangent at $x=2.5$ M1dep attempts y step / x step with correct scales B1 for 2 correct values P1ft for 4 or 5 correct plots Smooth curve but last 3 points may be ruled. In absence of plot[s], allow curve to imply plot[s] Solutions may be in any order

\begin{tabular}{|c|c|c|c|c|}
\hline 23 \& \begin{tabular}{l}
(b) \\
(c) (i) \\
(ii) \\
(iii) \\
(d)
\end{tabular} \& \begin{tabular}{l}
3, \(0.33[3 \ldots], 1\) \\
Correct quadratic curve \\
Correct exponential curve \\
Answer in range \(1.2<x<1.4\) \\
Answer in range \(1.2<x<1.35\) \\
Answer in range \(0.55<x<0.7\) \\
Correct tangent drawn \\
And answer in range \(-2.5<m<-1.5\)
\end{tabular} \& \begin{tabular}{l}
3 \\
3 \\
\\
3 \\
3 \\
\\
\\
\\
\hline 1 \\
1 \\
1 \\
1 \\
\hline
\end{tabular} \& \begin{tabular}{l}
B1 for each correct value \\
B2FT for 7 correct points or \\
B1FT for 5 or 6 correct points \\
B2FT for 7 correct points \\
or \\
B1FT for 5 or 6 correct points \\
Not from a line other than \(y=4\) (\(\pm 1 \mathrm{~mm}\)) \\
B1 for correct tangent at \(x=0.5\) \\
B2 for answer in range dep on close attempt at tangent \\
M1 for [-] \(\frac{\text { rise }}{\text { run }}\) used with values soi from tangent, dep on close attempt at tangent or answer in range \(1.5<m<2.5\) \\
or \\
SC1 for close attempt at tangent to exponential curve and answer in the range \(1.6<m<2.2\)
\end{tabular} \\
\hline 24 \& 9 (a) \& \begin{tabular}{l}
\[
\frac{-1 \pm \sqrt{1^{2}-4 \times 1 \times(-3)}}{2}
\] \\
\(-2.30, \quad 1.30\) final answer
\[
4,30,53
\]
\end{tabular} \& 2
2

3 \& | B1 for $1^{2}-4 \times 1 \times(-3)$ or better and if in the form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ then |
| :--- |
| B1 for $p=-1$ and $r=2(1)$ or better |
| B1 B1 |
| SC1 for -2.30 and 1.30 seen or -2.3 or -2.303 to -2.302 and 1.3 or 1.302 to 1.303 |
| or final answer - 1.30 and 2.30 |
| M1 for $(2 x+7)^{2}+(2 x+7)-3$ and |
| B1 for $(2 x+7)^{2}=4 x^{2}+14 x+14 x+$ 49 oe |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 26 \& \begin{tabular}{l}
5 (a) \\
(b) \\
(c) \\
(d) \\
(e)
\end{tabular} \& \begin{tabular}{l}
\[
-5.04,1.75,0
\] \\
Fully correct curve
\[
\begin{aligned}
\& -1.6 \text { to }-1.5 \\
\& -0.4 \text { to }-0.3 \\
\& 1.8 \text { to } 1.9 \\
\& -2.6 \text { to }-2.5 \text { www } \\
\& -0.4 \text { to }-0.3 \\
\& 1
\end{aligned}
\] \\
3.25 to 4.25 with correct tangent
\end{tabular} \& 3
5

1
1
1
1
1
1

3 \& | B1 for each correct value |
| :--- |
| B3FT for 10 correct plots from their (a) |
| B2FT for 8 or 9 correct plots |
| or B1FT for 6 or 7 correct plots and SC1 for two branches not joined |
| After $\mathbf{0}$ scored, M1 for $y=2 x-2$ drawn |
| B1 for correct tangent |
| B2 for answer in range dep on close attempt at tangent |
| M1dep for $[-] \frac{\text { rise }}{\text { run }}$ used with values soi from tangent, dep on correct or close attempt at tangent |

\hline 27 \& \& | (i) 1.4 to 1.6 |
| :--- |
| (ii) 1.15 to 1.25 |
| (iii) - 1 |
| (iv) -2.25 to -2.1 |
| -0.9 to -0.75 |
| 2.2 to 2.35 |
| (i) -15 |
| (ii) ${ }_{2}^{1-x}$ or $\frac{1}{2}-\frac{x}{2}$ oe final answer |
| (iii) $-2,2$ |
| (iv) $\quad \frac{1}{8}$ oe nfww | \& | 1 |
| :--- |
| 1 |
| 1 |
| 3 |
| 2 |
| 2 |
| 3 |
| 3 | \& | B2 for 2 correct or $\mathbf{B 1}$ for one correct or B1 for $y=x$ drawn ruled to cut curve 3 times |
| :--- |
| B1 for $[\mathrm{h}(3)=] 8$ seen or M1 for $1-2\left(x^{2}-1\right)$ or better |
| M1 for $2 x=1-y$ or $x=1-2 y$ or better |
| M1 for $x^{2}-1=3$ or better |
| B1 for one answer |
| M2 for $8 x=1$ or $8 x-1=0$ |
| or M1 for $1-2(3 x)[=2 x]$ |

\hline
\end{tabular}

29	8	(a) (i) -6 (ii) 2.75 oe (b) $\frac{x-3}{4}$ or $\frac{x}{4}-\frac{3}{4}$ Final answer (c) (i) 5 (ii) $x^{2}+5 x-7=0$ $\frac{-5 \pm \sqrt{5^{2}-4(1)(-7)}}{2(1)} \mathrm{oe}$ 1.14 and -6.14 final answers	1 2 2 2 B1 B1 B1 B1 B1	M1 for $[\mathrm{g}(x)=] 0.5$ or $7 / 14$ Or $\left(\frac{7}{x+1}\right)^{2}+5\left(\frac{7}{x+1}\right)$ oe M1 for $y-3=4 x$ or better or $x=4 y+3$ or better or $\frac{y}{4}=\frac{3}{4}+x$ or flowchart with -3 then $\div 4$ M1 for $4 x=23-3$ or $x+\frac{3}{4}=\frac{23}{4}$ or better May be implied by correct values in formula B1 for $\sqrt{5^{2}-4(1)(-7)}$ or better [53] If in form $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}, \mathbf{B} 1$ for -5 and 2(1) or better No recovery of full line unless seen Or SC1 for 1.1 or $1.140 \ldots$ and -6.1 or $-6.140 \ldots$ Or answers -1.14 and 6.14
30	(a) (b) (c) (d) (e)	2.125 and 2.375 Correct curve Ruled tangent at $x=2$ Gradient from 7.8 to 10.2 0 and -1.75 to -1.65 and 1.65 to 1.75 $-1.2 \text { to }-0.8<k<2.8 \text { to } 3.2$	2 B4 B1 2 2 2	B1 for one correct value B3FT for 11 correct plots or B2FT for 9 or 10 correct plots or B1FT for 7 or 8 correct plots No daylight at $x=2$. Consider point of contact as midpoint between two vertices of daylight, this must be between $x=1.8$ and 2.2 Dep on B1 awarded Allow integer/integer or a mixed number if within range or M1 dep for (change in y) $\div($ change in x) Dependent on any tangent drawn or close attempt at a tangent at any point Must see correct or implied calculation from a drawn tangent B1 for two correct values B1 for each correct or SC1 for reversed answers

32	(a) (b) (c) (d) (e) (f)	2 $1-x$ $x^{2}-2 x+2$ -6 $\sqrt{(-3)^{2}-4(1)(1)}$ or better $p=-(-3)$ and $r=2 \times 1$ oe $0.38,2.62$ $\mathrm{f}(x)$ and $\mathrm{g}(x)$	2 1 3 1 B1 B1 B1B1	B1 for $g\binom{1}{2}=\frac{1}{2}$ soi or $[\mathrm{fg}=] \begin{gathered}1 \\ 1-x\end{gathered}$ Accept equivalents e.g. $-(x-1)$ M1 for $(1-x)^{2}+1$ B1 for $\left\lfloor(1-x)^{2}=\right\rfloor 1-x-x+x^{2}$ or better or for $\left(x-\frac{3}{2}\right)^{2}$ Must see $\frac{p+\sqrt{q}}{r}$ or $\frac{p-\sqrt{q}}{r}$ or both or for $\frac{3}{2}+o r-\sqrt{\left(\frac{3}{2}\right)^{2}-1}$ SC1 for answers 0.4 and 2.6 or 0.3819 to 0.3820 and $2.618 \ldots$ or 0.38 and 2.62 seen in working or for -0.38 and -2.62 as final ans Accept f and g or $1 / x$ and $1-x$
33	(a) (b) (c) (d)	$0,4.5,3.11[1 \ldots]$ Complete correct curve with minimum below $y=2$ $\begin{aligned} & -0.5 \text { to }-0.6 \\ & 0.6 \text { to } 0.7 \\ & 2.8 \text { to } 2.9 \end{aligned}$ Correct line or no line and -0.7 to - 0.6 nfww	5 1 1 3	B1, B1, B1 B3 FT for 9 points correctly plotted B2 FT for 7 or 8 points correctly plotted or B1 FT 5 or 6 points correctly plotted and B1 indep two separate branches not touching or cutting y-axis if $0 \mathbf{S C 1}$ for $y=3$ indicated Must check line - not if wrong line B2 for $y=1-x$ ruled correctly or SC1 for ruled line with either gradient -1 or y-intercept 1 but not line $\mathrm{y}=1$ or correct freehand line

	(e) (f)	tangent ruled at $x=2$ and 0.62 to 0.8 $\begin{aligned} & \frac{1}{x^{2}}=-x \text { or } 1+x^{3}=0 \\ & 1=-x^{3} \text { or } x^{3}=-1 \\ & x=\sqrt[3]{-1} \end{aligned}$	3 M1 M1 A1	Accept integer/integer provided in range B1 for correct tangent drawn and M1 for change in $y /$ change in x dep on any tangent or close attempt at tangent at any point Must see correct or implied calculation from a drawn tangent dep M1 dep M2
34	(a) (b) (c) (d) (e)	$4-6 x$ final answer $9 x-8$ final answer $\frac{1}{27}$ final answer $\frac{4-x}{3}$ oe final answer $\frac{4}{3}$ or $1 \frac{1}{3}$ or 1.33 or better	1 2 3 2 3	M1 for $4-3(4-3 x)$ seen M2 for 3^{-3} soi by final answer $0.037037 \ldots$ to 3 sf or better or M1 for $[g(-1)=] 3$ soi M1 for a correct first step $3 x=4-y$ oe or $x=4-3 y$ or $\frac{y}{3}=\frac{4}{3}-x$ M2 for $3 x-4=0$ or better or M1 for $3^{-(4-3 x)}$
35	5 (a) (b) (c)	$-2,5.5$ Correct curve $\begin{aligned} & -2.6 \leqslant x \leqslant-2.4 \\ & 0.6 \leqslant x \leqslant 0.7 \\ & 1.8 \leqslant x \leqslant 1.9 \end{aligned}$	2 5 3	B1 for each value B5 for correct curve over full domain or B3FT for 9 or 10 points or B2FT for 7 or 8 points or B1FT for 5 or 6 points Point must touch line if exact or be in correct squar not exact (including boundaries) and B1 independent for one branch on each side of the y-axis and not touching or crossing the y-axis SC4 for correct curve with branches joined B1 for each value If $\mathbf{B 0}$ then $\mathbf{S C} 1$ for $y=5$ used

37	$6 \quad$ (a) (b) (c) (d) (e)	$-3,7.375,8.875$ Correct curve (i) Any integer less than 7 or greater than 10 (ii) 7,8 or 9 $y=15 x+2$ ruled and fit for purpose -1.45 to -1.35 and 0.4 to 0.5 Tangent ruled at $x=1.5$ 7 to 12	$1,1,1$ 4 1 1 B2 B2 B1	Accept 7.4 or 7.37 or 7.38 for 7.375 and 8.9 or 8.87 or 8.88 for 8.875 B3FT for 8 or 9 correct plots B2FT for 6 or 7 correct plots B1FT for 4 or 5 correct plots Point must touch line if exact or be in correct square if not exact (including boundaries) B1 for short line but correct or freehand full length correct line or for ruled line through $(0,2)$ (but not $y=2$) or for ruled line with gradient 15 (acc $\pm 1 \mathrm{~mm}$ vertically for 1 horizontal unit) B1 for each No daylight at point of contact. Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x=1.4$ and 1.6 Dep on B1 or close attempt at tangent at $x=1.5$ M1 for y-step $/ x$ - step for their tangent
38	(b) (c) (d)	(i) $(1,2)$ (ii) $y=3 x-1$ cao final answer (i) $(x+5)(x-2)$ isw solutions (ii) $\begin{array}{ll} {[a=]} & -5 \\ {[b=]} & 2 \\ {[c=]} & -10 \end{array}$ (iii) $x=-1.5$ Inverted parabola x-axis intercepts at -2 and 9 y-axis intercept at 18 (i) $\begin{aligned} & p=6 \\ & q=43 \end{aligned}$ (ii) - 43	1+1 3 2 3FT 1FT B1 B2 B1 3 1FT	M1 for gradient $=\frac{8--4}{3-1}$ oe and M1 for substituting $(3,8)$ or $(-1,-4)$ into their $y=3 x+\mathrm{c}$ or for finding y-intercept is -1 SC1 for $(x+a)(x+b)$ where $a b=-10$ or $a+b=3$ B1FT for each of their 5 and their -2 from (b)(i) and $\mathbf{B 1}$ for $\mathrm{c}=-10$ FT $x=($ their $(a+b)) / 2$ B1 for each After B0 allow SC1 for $(9-x)(2+x)$ oe B2 for $(x+6)^{2}-43$ or $p=6$ or $q=43$ or M1 for $(x+6)^{2}$ or $x^{2}+p x+p x+p^{2}$ and M1 for $-7-(\text { their } 6)^{2}$ or $p^{2}-q=-7$ or $2 p=12$ FT - their q

41	(b) (c) (d) (e)	1 3 2.5 Fully correct graph $-2.6 \text { to }-2.4$ Correct ruled line fit for purpose -1.6 to -1.5 Correct tangent and $0.9 \leqslant \operatorname{grad} \leqslant 1.5$	1 1 1 5 1 2 1 3	B3FT for 11, 12 points correct or B2FT for 9,10 correct points or B1FT for 7,8 correct points B1 for branch each side of y-axis and not touching y-axis SC4 for correct graph but branches joined $\mathbf{S C} 1$ for ruled line through $(0,1)$ but not $y=1$ or ruled line with gradient -1 or for correct line but freehand Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x=-3.4$ and -2.6 B2 if close attempt at correct tangent and answer in range (may be small amount of daylight) or B1 for ruled tangent at $x=-3$ within tolerance, no daylight at the point of contact and M1 (dep on B1 or close attempt at tangent) for a tangent at any point and $\frac{\text { rise }}{\text { run }}$ used
42	$10 \text { (a) }$ (b) (c) (d)	9 $4 x^{2}-2 x$ or $2 x(2 x-1)$ final answer $\frac{x+1}{2}$ oe final answer $\frac{4 x+4}{x(x+2)} \text { or } \frac{4 x+4}{x^{2}+2 x} \text { or } \frac{4(x+1)}{x(x+2)}$ or $\frac{4(x+1)}{x^{2}+2 x}$ final answer	2 3 2 4	B1 for $[f(3)=] 5$ or $2(2 x-1)-1$ M1 for $(2 x-1)^{2}+(2 x-1)$ B1 for $\left[(2 x-1)^{2}=\right] 4 x^{2}-2 x-2 x+1$ or $(2 x-1)(2 x-1+1)$ M1 for $x=2 y-1$ or $y+1=2 x$ or $\frac{y}{2}=x-\frac{1}{2}$ B1 for $x(x+2)$ oe isw as common denominator B2 for $4 x+4$ as numerator or $\mathbf{B 1}$ for $2(x+2)+2 x$ or better as numerator

43	2 (a) (b) (c)	(i) 1.62 or $1.62 \ldots$ (ii) 4 (iii) 7 (iv) $\frac{1}{3}$ oe (i) 0.25 oe and 1 (ii) Correct curve (iii) 2.3 (iv) $y=3 x-1$ oe 3 term equation (v) -1.7 to - 1.5 and 2	1 1 1 1 1 2 4 1FT 3 2	B1 for each B3FT for 6 or 7 correct plots or B2FT for 4 or 5 correct plots or B1FT for 2 or 3 correct plots Correct or FT where $y=5$ on their graph B2 for $3 x-1$ or $y=3 x[+c]$ oe or for $m=3$ and $c=-1$ or M1 for [gradient $=$] $\frac{8-2}{3-1}$ oe soi by $3 x$ and M1 for substitution of $(1,2)$ or $(3,8)$ into their $y=m x+c$ B1 for either or M1 for $y=x+2$ seen or drawn
44	(a) (b) (c) (d)	$\begin{array}{llll}0 & 4 & 0.625 & 0.875\end{array}$ Fully correct smooth curve line $y=x+1$ ruled and 0.2 to 0.3 and 1.8 to 1.95 Tangent ruled at $x=-1.5$ 2.2 to 5	$1,1,1,1$ 4 3 B1 2	B3 FT for 8 or 9 points or B2 FT for 6 or 7 points or B1 FT for 4 or 5 points Line must be fit for purpose ie at least from $x=0$ to $x=2$ B2 for correct line and 1 correct value or B1 for correct line or SC1 for no/wrong line and 2 correct values No daylight between tangent and curve at point of contact. Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x=-1.6$ and $x=-1.4$ dep on B1 M1 for $\frac{\text { rise }}{\text { run }}$ also dep on any tangent drawn or close attempt at tangent at any point Must see correct or implied calculation from a drawn tangent

47	(a) (b) (c) (d)	$20-22$ smooth correct curve through correct points line $y=\frac{1}{2}(x+1)$ ruled and $\begin{aligned} & -2.85 \text { to }-2.95 \\ & -1 \\ & 0.85 \text { to } 0.95 \end{aligned}$ tangent ruled -1.1 to -1.5	3 4	B2 for 3 correct B1 for 2 correct B3FT for 8 or 9 correct plots B2FT for 6 or 7 correct plots B1FT for 4 or 5 correct plots FT their table Line must be fit for purpose B3 for correct line and 2 correct values or $\mathbf{B} 2$ for correct line and 1 correct value or B1 for correct line or SC2 for no/wrong line and 3 correct values or SC1 for no/wrong line and 2 correct values No daylight between tangent and curve at point of contact. Consider point of contact as midpoint between two vertices of daylight, the midpoint must be between $x=-1.85$ and $x=-1.65$ dep on B1 M1 for rise/run also dep on any tangent drawn or close attempt at tangent at any point Must see correct or implied calculation from a drawn tangent Accept M1 for answer in range 1.1 to 1.5 after B1
48	$7 \quad$ (a) (b) (c)	3.5[0] 1.943 .11 Fully correct curve -0.7 to -0.6	3	B1 for each B3 FT for 10 or 11 points or B2 FT for 8 or 9 points or B1 FT for 6 or 7 points B1 indep two separate branches not touching or cutting y-axis SC4 for correct curve, but branches joined

56	4(a) 4(b) 4(c) 4(d) 4(e)	10, 7 Correct curve -1.7 to -1.55 Tangent ruled at $x=3.5$ 6.5 to 11 $\begin{aligned} & \text { line } y=2 x+10 \text { ruled } \\ & \frac{\text { AND }}{-1.3} \text { to }-1.1 \\ & 1 \\ & 4.1 \text { to } 4.25 \end{aligned}$	$\begin{array}{r}2 \\ 4 \\ 4 \\ 1 \\ \text { B1 } \\ \hline\end{array}$	B1 for each value B3 FT for 10 or 11 correct points B2 FT for 8 or 9 correct points B1 FT for 6 or 7 correct points FT their table FT their graph if one answer No daylight between tangent and curve at point of contact dep on tangent drawn or close attempt at tangent at $x=3.5$ M1 for rise/run also dep on tangent or close attempt at $x=3.5$ B3 for correct line (could be short) and 1 correct value or $\mathbf{B 2}$ for correct line (could be short) or B1 for $[y=] 2 x+10$ seen If zero scored, $\mathbf{S C 1}$ for no/wrong line and 3 correct values
57	7(a) 7(b) 7(c)(i) 7(c)(ii) 7(d) 7(e)	$x=0$ Tangent ruled at $x=0.5$ $-9 \text { to }-6.5$ $0 \quad 2.4$ or better 4 Correct smooth curve $x^{3}+3 x+4=10-8 x^{2}$ and correctly completed line $y=-2 x+2$ drawn and -0.45 to -0.35 nfww	1 B1 2 3 4 1 3	No daylight between tangent and curve at point of contact dep on ruled tangent or close attempt at tangent at $x=0.5$ M1 for rise/run also dep on tangent or close attempt at tangent at $x=0.5$ B1 for each B3FT for 6 or 7 correct plots or B2 FT for 4 or 5 correct plots or B1 FT for 2 or 3 correct plots FT their table B2 for ruled $y=-2 x+2$ or $\mathbf{B 1}$ for $-2 x+2$ seen or for line $y=-2 x+c$ drawn or for $y=c x+2$ $(c \neq 0)$ drawn and B1 for -0.45 to -0.35 nfww

60	6(a) 6(b) 6(c) 6(d) 6(e) 6(f) 6(g)	256 8 $9 x^{2}+12 x+5$ 16 $\frac{x-2}{3}$ oe final answer $\frac{4 x^{2}+2 x+1}{3 x+2}$ final answer 16		M1 for $3\left(x^{2}+1\right)+2$ or for $3(2)+2$ M1 for $(3 x+2)^{2}+1$ B1 for $\left[(3 x+2)^{2}=\right] 9 x^{2}+6 x+6 x+4$ oe M1 for $3 x+2=7^{2}+1$ or better M1 for $x=3 y+2$ or for $y-2=3 x$ or for $\frac{y}{3}=x+\frac{2}{3}$ B1 for $x^{2}+1+x(3 x+2)$ or better seen M1 for common denominator $3 x+2$
61	$\begin{gathered} 10(\mathrm{a})(\mathrm{i}) \\ 10(\mathrm{a})(\mathrm{ii} \\ 10(\mathrm{~b}) \end{gathered}$	$x+5$ $2 \sin x$ oe tangent ruled at P 1.3 to 1.4	$\begin{array}{r} 2 \\ 2 \\ \text { B1 } \\ \text { B2 } \end{array}$	B1 for linear equation with positive gradient or intercept 5 B1 for recognition of \sin or $\cos (x-90)$ dep on tangent drawn M1 for rise/run
62	5(a)(i) 5(a)(ii) 5(a)(iii)	2.7 to 2.8 tangent ruled at $x=-2$ $6 \text { to } 10$ $y=2 x-2 \text { ruled }$ and $x=-2.9$ to -2.8 cao	1 B1 2 3	dep on B1 or a close attempt at tangent at $x=-2$ or M1 for rise/run for their tangent, or close attempt, at any point Must see correct or implied calculation from a drawn tangent After M0, SC1 for gradient of tangent (or close attempt) in range embedded in $y=m x+c$ B2 for correct ruled line or B1 for short line or for freehand line or broken line or ruled line with gradient 2 or with y-intercept at $-2($ but not $y=-2)$

