

uuu. Q8 Maths.com

8	(a)	43 to 47	1	
	(b)	64 to 68	2	SC1 23 to 27
5		a any negative integern any even (positive) integer	2	B1 for one correct
16 (a)		0.7 to 0.8 and 5.2 to 5.4	2	B1 B1
(b)		-2 to -1 but must have a tangent at $x = 1$ for full marks	3	M1 drawing tangent at $x = 1$ M1 for using y step/ x step on their tangent wherev it is drawn
19	(a)	75	2	B1 for $[g(6) =] 36$
	(b)	3.5 -6.5	3	M1 for $(2x + 3)^2 = 100$ M1 for $2x + 3 = [\pm]10$
				If 0 scored, SC1 for one correct value as answer
	(c)	$\frac{x-3}{2}$ oe final answer	2	M1 for $x = 2y + 3$ or $y - 3 = 2x$ or $\frac{y}{2} = x + \frac{3}{2}$ or better
	(d)	5	1	