

Qu	. Qu.	Answers	Mark	Part Marks
1	1 (a)	11:14	1	
	(b)	50	2	M1 for $(220 + 280) \div 10$ o.e.
	(c)	12	2	M1 for $21 \div (4+3) \times 4$ (or 3) o.e.
	(d)	280	3	M1 for 0.35 × their 500 (175) M1 dependent × 1.60
	(e)	240	2	M1 for dividing 264 by 1.1 oe
2	1 (a)	240 ÷ 8 × 3 or 240 ÷ 8 × 5 or $\frac{3}{8}$ of 240 or $\frac{5}{8}$ of 240 oe	1	Accept reverse e.g. $90:150=3:5$ and $90+150=240$
		8 01 240 06		
	(b) (i)	5 www 2	2	M1 for $\frac{100 \times 9}{90 \times 2}$ oe
	(ii)	165 www 2	2	M1 for 99 ÷ 0.6 oe
	(c)	162.24 final answer cao	2	M1 for $150 \times 1.04 \times 1.04$ oe implied by answer 162.2
	(d) (i)	58.67 final answer cao	3	SC2 for 58.7 or M1 for $\frac{150 \times 4 \times 20}{100}$ oe (120) then M1 (dependent on the first M1)
				328.67 – 150 – their 120 oe Answers of 208.67 or 208.7 imply first M1
	(ii)	219 (.1) www 2	2	M1 for $\frac{328.67}{150} \times 100$ oe
3	1 (a) (i)	2:3	1	
	(ii)	$30 \div 2 \times 3$ o.e.	E1	Allow 2:3 (oe) = 30:45
	(iii)	60	2	M1 for $3 \div 5 \times 100$ oe
	(b)	31.83	3	SC2 for 31.827 as final answer or not spoiled. or M1 for × 1.03 twice oe
	(c) 1.5 www. Qe		2//	M1 for $\frac{30 \times r \times 5}{100} = 2.25$ oe or for 2.25 ÷ 5 then ÷ 30 × 100

4	1	(a) (i) 1088	2	M1 for 3136 ÷ (17 + 32) soi by 64 or 2048
	1	(ii) Their 1088 × 2 and (3136 – their 1088) × 4.5	M1	2048 may be 32 × 64
		2176 + 9216	E1	
		(b) 11.9 to 11.9031 www	3	M2 for $\frac{(12748-11392)\times100}{11392}$ oe
				or M1 for $\frac{12748 - 11392}{11392}$ soi by 0.1119
				or $\frac{12748}{11392}$ (×100) soi by 111.9 or 112 or 1.119
		(c) 8900	3	M2 for 11392 ÷ 1.28 oe or M1 for 11392 = 128(%) oe
5	1	(a) 432	2	M1 for $756 \div 7 \times 4$ oe
		(b) (i) 8970	2	M1 for 7800 × 1.15 oe After 0 scored, SC1 for 1170 as answer
		(ii) $\frac{\text{their } 9867(-7800)}{7800} (\times 100)$ or 1.15×1.10	M2	Their 9867 is their (b)(i) × 1.1 Implied by 1.265 or 0.265 or 126.5 or M1 for their (b)(i) × 1.10 (9867 seen or 2067 seen)
		26.5 % cao	A1	www3
		(c) 8100	3	M2 for 9720 ÷ 1.2 oe or M1 for 120% = 9720 oe
		(d) 562.43 or 562 or 562.4(0) or 562.432	3	M2 for 500×1.04^3 or alt complete method or M1 for 1.04^2 or 1.04^3 oe soi e.g. \$540.80 or 562.(43) seen in working
6	1	(a) 200 ÷ 10 × 3 oe 200 ÷ 10 × 2 oe	M1 M1	
		(b) 65	2	M1 for $\frac{39}{60} \times 100$ oe 35 is M0
		(c) 46	3	M2 for 36.80 ÷ 0.8 oe or M1 for 80% = 36.80 oe
		(d) 0.6(0)	3	M2 for $5(x + 12) + 2x = 64.2$ oe or $(64.2 - 5 \times 12) \div 7$ or $5x + 2(x - 12) = 64.2$ oe or $(64.2 + 2 \times 12) \div 7$ or M1 for $y = x + 12$ and $5y + 2x = 64.2$ or $y = x - 12$ and $5x + 2y = 64.2$ After M0, SC1 for $k(x \pm 12)$ seen

	1			
7	1 (a)	(i) $\frac{1380}{62+53} \times 62$	1	Allow 115 for 62 + 53
		(ii) 7.27 (7.271 to 7.272)	1	
		(iii) 42	2	M1 for $\frac{3150}{75}$ oe
	(b)	(i) 235	3	B2 for angle $ACS = 55$ or angle $ACN = 125$ B1 for 55 seen
		(ii) 12.6 (12.58 to 12.59)	3	M2 for $\frac{4}{6} \times 18.9$ or $4 + 4 + 2 \times 4 \times \cos 55$ or
				$4+4+2\times 4\times \sin 35$ oe
				(M1 for $\frac{4}{6}$ soi or $2 \times 4 \times \cos 55$ or
				$2\times4\times\sin35\mathrm{soi}$ oe)
	(c)	1500	3	M2 for $\frac{1380}{1-0.08}$ oe
				(M1 for recognition that $92\% = 1380$)
8	1 (a)	(i) 25 (ii) 15.5 (15.46 to 15.47) (iii) 0.05 oe	1 1 2	B1 for 1/100 or 0.01 seen
	(b)	8812.50 final answer www 3	3	Condone 8812.5 M2 for $7500 \times 5 \times 0.035 + 7500$ oe (implied by final answers 8810, 8812, 8813 or 8812.5(0) seen) or B2 for 1312.5 as final answer or M1 for $7500 \times 5 \times 0.035$ oe (implied by final answers 1310, 1312, 1313)
	(c)	(i) 2 ² × 3 × 5 (ii) 12 (iii) 240	2 2 2	Allow $2 \times 2 \times 3 \times 5$ M1 for any correct <u>product</u> of 3 factors = 60 seen or correct factor ladder or correct tree (condone 1's on tree/ladder) M1 for $2^2 \times 3$ or $2 \times 2 \times 3$ oe M1 for $2^4 \times 3 \times 5$ or $2 \times 2 \times 2 \times 2 \times 3 \times 5$ oe SC2 only for both correct answers (ii) (iii) reversed
9	1 (a)	(i) 34.65 (ii) 41.58 (iii) 264	1 2	M1 for 0.15×277.2 implied by 41.6 or 41.58 seen and not spoiled M2 for $277.2 \div (1 + 0.05)$ o.e. or M1 for recognition that $105(\%) = 277.20$
	(b)	(i) 1000 (ii) 3650	2 2	M1 for $2200 \div (2 + 4 + 5) \times 5$ M1 for $2200 \div 44 \times 73$

10	1	(a) (i) 4950	2	M1 for 9000 × 0.55 oe
		(ii) 9:11	1	Accept 1 : 1.22 or 0.818 : 1 After 4050 in (a)(i) allow SC1 for 11 : 9 etc
		(b) 1504	1	1 11 10 0 m (a)(1) and w 5 01 101 11 19 000
		564	1	
		188	1	After 0 scored M1 for $2256 \div (8 + 3 + 1)$ soi
		(c) (i) 6847.99 or 6848 or 6850	3	M2 for 15000 × 0.77 ³ oe (6847. ()ww imp M2) or M1 for 15000 × 0.77 ² oe soi (8893.5) After 0 scored SC1 for art 27913 or 27910 or 27900
		(ii) 54.3 (54.33 to 54.35)	3ft	ft their (15000 – their (c)(i))/15000 × 100 to 3sf or better but not for negative answer or from 4650 in (c)(i) leading to 69% M2 for 1 – 0.77³ (0.543) or their (15000 – their (c)(i))/15000 (× 100) or SC2ft their (c)(i)/15000 × 100 correctly evaluated (45.65 to 45.67 or 45.7) or M1 for 0.77³ (0.4565) or their (c)(i)/15000
11	9	(a) (i) $2 \times 3 \times 3 \times 7$ oe	2	M1 for prime factors of 2,3,3,7 shown condone 1('s) shown as well for method only
		(ii) 18	1	
		(iii) 504	2	M1 for other multiples of 504 or $2 \times 2 \times 2 \times 3 \times 3 \times 7$ oe shown If (ii) and (iii) both correct but reversed allow SC1
		(b) 3.028 or 3.029 cao	4	B3 for 3.0289(85) or M1 for their 105/their 34 (their 105 in range 104 to 106 and their 34 in range 33 to 35) and B1 for 104.5 or 34.5 or 34.499 selected
		(c) πr^2 their $h = \text{their } V$	M1	Where V is in range 540 to 560 and h is in range 11 to 13
		$(r^2 =)$ their V $\pi \times \text{their } h$	M1	Implies previous method (15.36 implies M2) If using 545 and 12.5 then 13.88 (leading to 3.73) If using 550 and 12 then 14.59 (leading to 3.82)
		Sq root	M1	Dep on M2, can be implied from answers
		Selects 555 or 554.99 and 11.5	B1	Indep
		3.919 cao	A1	If trials then 5 or 0

ı	_			
1	(a)	(i) 5	2	M1 for $\frac{3 \times 15}{(5+3+1)}$
		(ii) 108	2	M1 for $60 \times \frac{9}{5}$ e
	(b)	Correct conversion of money $J \times 0.718$ or $A \div 0.718$	M1	Correct conversion of money soi by 146.83[1] rounded or truncated to 3sf or 134.26[1] rounded or truncated to 3 sf if done 1 st
		Correct equalising of weights e.g. $J \times \frac{2[0]}{3[0]} \qquad \text{or } A \times \frac{3[0]}{2[0]}$ or $J \div 3$ and $A \div 2$ or $J \div 30$ and $A \div 20$	M1	Correct equalising of weights or money Accept other methods that give a pair of comparable values for method and accuracy marks This mark can be implied by values seen correct to 3 sf or better
	1	97 to 98 or 201[.39] and Ann 48.9[4] and 48.2[0] and Ann or 68[.16] to 68 [2] and 67[.13] and		The underlined values imply M1 for the money conversion
		Ann 4.88 to 4.9 and 4.82 and Ann or 6.8[1] to 6.82 and 6.7[1] and Ann	A2	Or A1 for 97 to 98 or 201[.39] or a correct pair of values with wrong/no conclusion
	(c)	302 Final answer	3	M1 for 60 × 60 × 4 soi by 14400 or figs 6048 or figs 3024 and M1 for ÷ (1000 × 20) soi Answer 302.4 implies M2
	(d)	13.6[0]	3	M2 for $\frac{15.3[0]}{1.125}$ oe or M1 for 15.3[0] associated with 112.5%
	(e)	12	1	
1 (a)	11	134	3	M2 for $\frac{504}{12} \times (12 + 7 + 8)$ soi by answer of 1130 or B1 for 27 or 42 or 294 or 336 seen
(b) (i)	46	58.72	3	M2 for $\frac{93}{100} \times 504$ oe soi by 468.7 or 469 or M1 for $\frac{7}{100} \times 504$ (implied by 35.28)
(ii)	84	uuu. Q8	3	100 M2 for $\frac{64.68}{77} \times 100$ or M1 for $(100 - 23)\% = 64.68$
(c)	26	52.19 cao	3	M2 for 250×1.016^3 oe implied by answer 262.2 or better
(d)	12	2.5%	3	or M1 for 250×1.016^n oe $n > 2$ seen M2 for $\frac{324 - 288}{288} \times 100$ or M1 for $\frac{324}{288} \times 100$ (112.5) or $\frac{36}{288}$ (0.125)
	1 (a) (b) (i) (c)	(c) (d) (e) 1 (a) 11 (b) (i) 46 (c) 26	(ii) 108 (b) Correct conversion of money J × 0.718 or A ÷ 0.718 Correct equalising of weights e.g. J × $\frac{2[0]}{3[0]}$ or A × $\frac{3[0]}{2[0]}$ or J ÷ 3 and A ÷ 2 or J ÷ 30 and A ÷ 20 97 to 98 or 201[.39] and Ann or 68[.16] to 68.[2] and 67[.13] and Ann or 68[.16] to 68.[2] and 67[.13] and Ann or 6.8[1] to 6.82 and 6.7[1] and Ann (c) 302 Final answer (d) 13.6[0] (e) 12 1 (a) 1134 (b) (i) 468.72	(ii) 108 (b) Correct conversion of money J × 0.718 or A ÷ 0.718 Correct equalising of weights e.g. J × 2[0]

14	2	(a)	445 final answer www 3	3	M2 for $351.55 \div (1 - 0.21)$ oe or M1 for $351.55 = (100 - 21)$ (%)
		(b)	640 or 4640 4622.5 or 622.5	2 2	M1 for $4000 \times 0.08 \times 2$ oe M1 for $4000 \times (1.075)^2$ oe or 4000×0.075 (= 300) and $(4000 + \text{their } 300) \times 0.075$ and total interest = the sum of their 2 interests.
			Alex by 17.5(0) cao final answer www 6	2	M1 for S I amount – C I amount or reverse or simple interest – compound interest or reverse
15	5	(a)	(£) 2.37 or 2.371 to 2.372 www 2	2	M1 for 34.95 ÷ 1.17 implied by 29.87or 29.9 or SC1 for 2.77 or 2.78 or 2.775
		(b)	154 days 4 hours cao	3	M1 for $4.07 \times 10^{12} \div (1.1 \times 10^9)$ implied by figs 37 or 154. () A1 for 3700 seen or 3.7×10^3 seen or $154 \frac{1}{6}$ oe or 154 rem 4
					134 16111 4
		(c) (i)	9.25	1	
		(ii)	Lower = 51.3375 final answer Upper = 52.8275 final answer	1	After 0 scored SC1 for answers reversed or 9.35 and 5.65 seen or 51.3375 and 52.8275 seen
<u>_</u>					
16	1	(a) (i)	[0]5 38 oe	1	Allow 5h 38 but not 5h 38mins
		(ii)	92.7 [92.72 to 92.73] oe	2	Allow $92\frac{8}{11}$ or $\frac{1020}{11}$ M1 for $850 \div$ their 9 h 10 min in hours oe Allow $850 \div 9.1$ for M1
		(b) (i)	204 or 203. 9[0] to 203.91	3	M1 for 160 × 255 + 330 × 190 + 150 × 180 [130 500] M1 dep for ÷ 640
		(ii)	640 ÷ (4 + 3 + 1) × 3 [= 240]	M1 M1	[Can be in either order or shown together] Accept $240 \div 3 \times (4 + 3 + 1) = 640$ for M2
		(iii)	150 www 3	3	M2 for 240 ÷ 1.6 oe or M1 for recognition of 240 = 100 + 60 %
		(c)	11 cao www 3	3	M1 for figs 340 or figs 550 ÷ speed [e.g. figs 188, figs 306] – can be spoiled by further work and M1 for correct conversion of units to give answer in seconds e.g. speed = 50 m/s M's independent

17	9	(a)	5.79×10^7 oe 5.21 39.5	1 1 1	Accept ans in range 57890000 to 57900000 5.207 39.50 or 39.51 Accept answers to greater than 3sf
		(b)	(i) 498.6 to 499	2	M1 for $1.496 \times 10^8 \div 300000$
		(0)			
			(ii) 328 or 328.3	2	M1 for figs 197 or figs 328[3] seen Or their 39.5 × their (b)(i)
			12	_	
		(c)	$9.46[0]$ to 9.461×10^{12}	3	B2 for any correct equivalent
					or M1 for 300 000 × 3600 × 24 × 365 oe or for answer figs 946 to 9461
				S. C.	
		(d)	63200 or 63235 to 63242 oe	2	M1 for figs (their (c) ÷ 1496). Implied by first 3 figs correct
18	1	(a)	(i) 5	2	M1 for $\frac{3 \times 15}{(5+3+1)}$
			(ii) 108	2	M1 for $60 \times \frac{9}{5}$ oe
		(b)	Correct conversion of money $J \times 0.718$ or $A \div 0.718$	M1	Correct conversion of money soi by 146.83[1] rounded or truncated to 3sf or 134.26[1] rounded or truncated to 3 sf if done 1 st
			Correct equalising of weights e.g. $J \times \frac{2[0]}{3[0]} \qquad \text{or } A \times \frac{3[0]}{2[0]}$ or $J \div 3$ and $A \div 2$ or $J \div 30$ and $A \div 20$	M1	Correct equalising of weights or money Accept other methods that give a pair of comparable values for method and accuracy marks This mark can be implied by values seen correct to 3 sf or better
			97 to 98 or 201[.39] and Ann 48.9[4] and 48.2[0] and Ann or 68[.16] to 68 [2] and 67[.13] and		The underlined values imply M1 for the money conversion
			or 68[.16] to 68.[2] and 67[.13] and Ann 4.88 to 4.9 and 4.82 and Ann or 6.8[1] to 6.82 and 6.7[1] and Ann	A2	Or A1 for 97 to 98 or 201[.39] or a correct pair of values with wrong/no conclusion
		(c)	302 Final answer	3	M1 for 60 × 60 × 4 soi by 14400 or figs 6048 or figs 3024 and M1 for ÷ (1000 × 20) soi
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/ (	Answer 302.4 implies <b>M2</b>
		(d)	13.6[0]	3	M2 for $\frac{15.3[0]}{1.125}$ oe or M1 for 15.3[0] associated with 112.5%
		(e)	12	1	of 141 for 13.5[0] associated with 112.5/0

19 10	(a) (i) 20	1	
	(ii) $n-4$ oe $n+4$ oe $n+6$ oe	2	Accept unsimplified  B1 for two correct
	(iii) $(n-4)(n+4)-(n-6)(n+6)$	M1	ft from their algebraic expressions can be implied by $n^2 - 4n + 4n - 16 - (n^2 - 6n + 6n - 36)$ or $n^2 - 16 - (n^2 - 36)$
	$n^2 - 4n + 4n - 16 - (n^2 - 6n + 6n - 36)$ or better		Must have a line of algebra
	20	E1	With no errors or omission of brackets
	(b) (i) 24	1	
20 1	(a) (i) [0]9 15 [am]	1	Any acceptable form of time
	(ii) 64.9 or 65.[0] or 64.92 to 64.98	2	M1 for 92 ÷ (1 and 25 mins) or 92/85 × 60 oe or 92 ÷ (1.41 to 1.42)
	(iii) 11.76or 11.8	1	
	(iv) 80	3	<b>M2</b> for 92 ÷ 1.15 oe or <b>M1</b> for 115% associated with 92
	(b) (i) $150 \div (11 + 16 + 3)$ or $150 \times 3$ oe then $\times 3$ or $\div 30$	M1 E1	Correct first step  Correct conclusion
	(ii) 11:9 final answer		M1 for 8.25 : (15 – 8.25) oe For M1 e.g. allow 1 : 0.818 [0.8181 to 0.8182] or 1.22 : 1 [1.222] After M0, SC1 for 9 : 11 as final answer

21 1 (8	i) (i)	[0]8 15	1	
	(ii)	$\frac{1.8}{27} \times 60 = 4$ oe	M2	<b>M1</b> for $\frac{1.8}{27}$ oe [0.0667 or better]
(t	(i)	275	3	<b>M2</b> for $\frac{15-4}{4} \times 100$ or
	(ii)	73.3[3]	3	$\frac{15}{4} \times 100 - 100 \text{ oe}$ or $\mathbf{M1} \text{ for } \frac{15 - 4}{4} \text{ or } \frac{15}{4} \times 100 \text{ or oe}$ $375$ $\mathbf{M2} \text{ for } \frac{1.8}{15} \times 60 \text{ [=7.2 min] and}$ $\frac{27 - their 7.2}{27} \times 100 \text{ oe}$ or
				M1 for $\frac{1.8}{15}$ × 60 [=7.2 min] or final answer of 26.6[6] or 26.7
	(iii)	25	2	M1 for $\frac{9}{figs 36}$ oe
		www. Q8		atts.com

22	1	(a)	(i) $\frac{6}{5+6+3} \times 560 = 240$	2	Accept 'of' used instead of $\times$ M1 for $560 \div (5 + 6 + 3)$
			<b>(ii)</b> 120	1	
		(b)	90	2	<b>M1</b> for $\frac{3}{8} \times 240$ oe
		(c)	(i) 96120 final answer	2	M1 for $their(a)(ii) \times 75 + (560 - their(a)(ii)) \times 198$ oe
			(ii) 187.5[0] final answer	3	<b>M2</b> for $\frac{198}{1+0.056}$ oe
					or <b>M1</b> for $(100 + 5.6)[\%] = 198$ oe seen
		(d)	184[.2]	3	<b>M2</b> for $\frac{36 \times 0.75 - 9.5}{9.5} \times 100$ oe
					or M1 for $\frac{36 \times 0.75}{9.5} \times 100$ or $36 \times 0.75 - 9.5$ [17.5] used implied by answer 84.2
		(e)	69.4 and 69[.0] cao	3	or <b>SC1</b> for final answer 284[.2] <b>SC2</b> for one correct or both correct but reversed <b>M1</b> for two of 10.85, 10.95, 23.65 or 23.75 seen or 2(23.7 + 10.9) + 4(0.05) or 2(23.7 + 10.9) - 4(0.05)
23 1	(a)		2814 final answer	2	<b>M1</b> for $2345 \div 5$ soi by $469$ or ans = $2810$
	(b)		257.95 final answer	2	<b>M1</b> for $2345 \times 0.11$ oe or ans = $258$
	(c)	(i)	280.5[0] final answer	2	<b>M1</b> for 330 × (1 – 0.15) oe or ans = 281
		(ii)	375	3	M2 for $330 \div (1 - 0.12)$ oe Or M1 for $330 = (100 - 12)\%$ oe
	(d)		1605.89 or 1605.9[0]	3	M2 for $1500 \times (1 + 0.023)^3$ oe soi by $1605.898751$ or $1500 \times 1.07(05)$ Or M1 for $1500 \times (1 + 0.023)^2$ oe
	(e)		23.1 or 23.07 to 23.08	3	M2 for $\frac{325-250}{325} \times 100$ oe  Or M1 for $\frac{325-250}{325}$ soi by 0.2307 3sf or better  or $\frac{250}{325} \times 100$ soi by 76.9

24	1 (a)	(i) $\frac{2}{5}$ cao	1	
		(ii) 3:2 cao	1	
	(b)	(i) 1.22	2	<b>M1</b> for 86.38 – 28 × 1.56
		(ii) 1.3 [0] nfww	3	<b>M2</b> for 1.56 ÷ 1.2 oe <b>or M1</b> for 1.56 = 120% soi
	(c)	33.6[0]	2	<b>M1</b> for (667 – 314.2) ÷ 10.5 oe
25	1	(a) (i) 3216 Final answer	2	<b>M1</b> for $(18900 - 5500) \times 0.24$ oe
		(ii) 1307 Final answer	2FT	FT (18900 – their (a)(i)) ÷ 12 correctly evaluated M1 for (18900 – their (a)(i)) ÷ 12
		<b>(b)</b> 4.5[%] nfww	2	M1 for 19750.50 [-18900 18900 19750.50 - 18900 or 18900
		(c) A by 31.05 or 31.04 to 31.05 or 31.[0] 31.1[0]	5	M1 for 1500 × 4.1/100 × 3 [+ 1500] oe M1 for 1500 × 1.033³ [- 1500] oe A1 for 1684.5 or 184.5 or 1653[.45] or 153[.45] and M1dep for subtraction of their amounts or their interests
26	7	(a) 14 10 or 2 10 pm final answer	2	M1 for (0)8 10 oe or answer 14 hours and 10 minutes or answer 2 10 [am]
		(b) 5 hours 45 minutes cao	2	<b>M1</b> for 345 [mins] seen or for 805 /7 × 3 oe or 5.75 seen
		(c) (i) 798 or 798.2 to 798.4	2	<b>M1</b> for $10712 / 13\frac{25}{60}$ or $10712 \div 13.4$
		(ii) $1.82 \times 10^5$ or $1.815 \times 10^5$ to $1.816 \times 10^5$	4	B3 for 182000 or 181500 to 181600 seen or M2 for 10712000/59 oe or M1 for figs 10712/figs 59 soi by figs 182 or figs 1815 to 1816 and B1 FT for their number of litres correctly converted to standard form rounded to 3sf or better
		(d) 8600	3	<b>M2</b> for 10148 ÷ 1.18 oe <b>or M1</b> for 10148 associated with 118[%]

احرا					<u> </u>	
27	1	(a)	(i)	45	2	<b>M1</b> for $5 \times 63 \div 7$
			(ii)	20	2	<b>M1</b> for $5 \times 56 \div 14$
		(	(iii)	23.4 or 23.38 to 23.41	3	<b>M2</b> for $\frac{13 \times 4.9 - 48.8}{13 \times 4.9} \times 100$
						or $\frac{4.9 - 48.8 \div 13}{4.9} \times 100$
						Or
						M1 for $\frac{13 \times 4.9 - 48.8}{13 \times 4.9}$ or $\frac{48.8}{13 \times 4.9} \times 100$ or 76.6[]
		(b)		128	4	Using fractions (percentages / decimals):
						M1 for $\frac{3}{4} \times \frac{3}{8} = \frac{9}{32}$ or $\frac{75}{100} \times 37.5 = 28.125\%$
						<b>A1</b> for $\frac{9}{32}$ or 28.125[%]
						<b>M1</b> for $36 \div \frac{9}{32}$ oe
						or $36 \times \frac{100}{28.125}$ oe
						Partial percentages
						<b>M1</b> for (Remaining) $\frac{100 \times 36}{37.5}$ [= 96]
						<b>A1</b> for 96
						<b>M1</b> for $96 \div \frac{75}{100}$ oe
						<b>SC1</b> for 288
			P			
				uma (	8/	Maths.com
				www.20		Manis.com

28	1	(a)	$240 \div (5+7) \times 7 = 140$ oe	M2	<b>M1</b> for 240 ÷ (5 + 7) or 240 × 7
		<b>(b)</b>	2:3 final answer	2	<b>B1</b> for ratio of form $2x : 3x$ seen
					or <b>SC1</b> for 3 : 2
		(c)	144	3	<b>M2</b> for $120 + \frac{120 \times 4 \times 5}{100}$ oe
					or M1 for $\frac{120 \times 4 \times 5}{100}$
		(d)	89.99 cao mark final answer	3	<b>B2</b> for 89.9[8] shown but not spoiled or answer 90[ .0] nfww
					or <b>M1</b> for $80 \times \left(\frac{104}{100}\right)^3$ oe
					If <b>M1</b> spoiled by adding 80 or subtracting 80 then <b>SC1</b> for answers 169.99 or 9.99
		(e)	4.08	3	<b>M2</b> for $\frac{200 \times r \times 2}{100} = 200 \times 1.04^2 - 200$ oe
					<b>or M1</b> for $200 \times 1.04^2$ [216.3[2]] oe
					or $\frac{200 \times r \times 2}{100}$ oe
29	1	(a)	62100[.00] Final answer	2	<b>B1</b> for 62 074[. 35] or 62 070
		(b)	39300	3	M2 for 45 981÷ 1.17 oe or M1 for 45 981 associated with 117 [%]
		(c)	20436	2	<b>M1</b> for $45981 \div (3+4+2)$ or $45981 \times 4$
		(d)	4	3	<b>M2</b> for $\frac{1.5 \times 1000}{330}$ oe
					<b>or M1</b> for figs 4545 or 455
		(e)	25545	2	M1 for $45981 \times \frac{5}{9}$
			www.Q8	M	aths.com

		_			
1	(a)	(i)		2	<b>M1</b> for $72 \div (7 + 2 + 3)$
		(ii)		2	<b>M1</b> for $13.5 \div 3 \times (7 + 2 + 3)$ oe
		(iii)		3	<b>M2</b> for 8.4[0] ÷ 1.12 oe or <b>M1</b> for 112[%] associated with [\$]8.4[0] oe
	(b)	(i)	$6 \times 0.5 \times 2 \times 2 \times \sin 60$ oe	M2	M1 for a correct relevant area inside the hexagon e.g. $0.5 \times 2 \times 2 \sin 60$ oe
			10.38 to 10.39[] [= 10.4]	A1	Must see 10.38 to 10.39[]
		(ii)	4.67 to 4.68	2	<b>M1</b> for 10.4 × figs 45 [figs 467 to 468]
		(iii)	273	4	M1 for <i>their</i> ( <b>b</b> )(ii) × 1250 ÷ 1000 A1 FT for <i>their</i> ( <b>b</b> )(ii) × 1250 ÷ 1000 evaluated to at least 3 sf
					<b>M1dep</b> on previous <b>M1</b> for <i>their</i> mass in tonnes (rounded up) $\times$ 45.5[0] if between 6 and 10 or for <i>their</i> mass in tonnes (rounded up) $\times$ 47[.00] if between 1 and 5 or for <i>their</i> mass in tonnes (rounded up) $\times$ 44[.00] if over 10
1	(a)	(i)	49.5[0]	3	<b>M2</b> for $16.5[0] \div 5 \times (5 + 3 + 7)$ or <b>M1</b> for $16.5[0] \div 5$
		(ii)	66	1FT	FT their (a)(i) $\div$ 75 × 100 to 3 sf or better
	<b>(b)</b>		2 hours 39 mins 45 secs	3	<b>B2</b> for 159.75 oe, e.g. 2.6625 [h] 9585 [s] or <b>M1</b> for 3 hrs 33 mins oe / (2 + 9 + 1) oe
	(c)		18.75 final answer	3	<b>M2</b> for 16.5[0] ÷ 0.88 oe or <b>M1</b> for 16.5[0] associated with 88[%]
2	(a)	(i)	$\frac{920}{8} \times 7 \ [=805] \text{ oe}$	1	$\frac{2990}{26} \times 7 = 805$
		(ii)	30.8 or 30.76 to 30.77	2	<b>M1</b> for $\frac{8}{(11+8+7)}$ [× 100]
	(b)		1211 final answer	5	B4 for 13 926.5[0] [area A total sales] or B3 for 11 040 [area B] and 10 867.50 [area C] or 21 907.5 [area B + area C] or B2 for 11 040 [area B] or 10 867.50 [area C] or M1 for 736 [B tickets] and M1 for 483 [C tickets]  After 0 scored SC2 for answer of 1196 or SC1 for 13754 (A total sales)
	1	(b) (c) 2 (a)	1 (a) (i) (ii) (iii) (b) (c) 2 (a) (i) (ii)	(ii) (iii) (iii) (b) (i) 6 × 0.5 × 2 × 2 × sin60 oe  10.38 to 10.39[] [= 10.4] (ii) 4.67 to 4.68 (iii) 273  1 (a) (i) 49.5[0] (ii) 66 (b) 2 hours 39 mins 45 secs (c) 18.75 final answer  2 (a) (i) 920/8 × 7 [=805] oe (ii) 30.8 or 30.76 to 30.77	(ii) (2) (iii) 2 (iii) 3 (b) (i) $6 \times 0.5 \times 2 \times 2 \times \sin 60$ oe M2 10.38 to 10.39[] [= 10.4] A1 (ii) 4.67 to 4.68 2 (iii) 273 4 (iii) 66 1FT (b) 2 hours 39 mins 45 secs 3 (c) 18.75 final answer 3 2 (a) (i) $\frac{920}{8} \times 7$ [=805] oe 1 (ii) 30.8 or 30.76 to 30.77 2

			12	I	
33 1	(a)	(i)	$\frac{13}{13+8+3} \times 12000 \text{ with no}$ subsequent errors	1	
		(ii)	4000	1	
	(b)		$2 \times 6500 + 5 \times their(\mathbf{a})(\mathbf{ii}) + (12000 - 6500 - their(\mathbf{a})(\mathbf{ii})$	2	B1 for any two of $2 \times 6500$ , $5 \times their(\mathbf{a})(\mathbf{ii})$ , $(12000 - 6500 - their(\mathbf{a})(\mathbf{ii}))$ seen
			or $(13 \times 2 + 8 \times 5 + 3 \times 1) \times 500$		or $13 \times 2 + 8 \times 5 + 3 \times 1$
	(c)		37 500	3	M2 for $\frac{34500}{100-8} \times 100$ oe
					or M1 for 34500 associated with (100 – 8)%
	(d)		$\frac{11}{26}$ cao	2	M1 for any correct simplified version of $\frac{2750}{6500}$
	(e)		89 500	1	
34 1	(a)		1848 final answer	2	<b>M1</b> for $1650 \times \left(1 + \frac{12}{100}\right)$ oe
	<b>(b)</b>	(i)	1750	2	M1 for $\frac{500}{9-5}$ [×5] or [×9] or any equation which
					would lead to $4x = 500$ or $4x = 2500$ or $4x = 4500$ or $4x = 7000$ when simplified
		(ii)	$64\frac{2}{7}$ or 64.3 or 64.28 to 64.29	1	
	(c)	(i)	33 : 20 oe	2	B1 for 33: 6 or 20: 6 or 5.5 oe seen or 3.33oe seen or M1 for two ratios with a common number of
		(ii)	236	3	children implied by $20k$ and $33k$ seen, $k > 0$ M2 for $\frac{24}{2} \times 11 + \frac{24}{3} \times 10$ oe
		(11)	230	3	or $((3 \times 11) + (2 \times 10)) \times 24 \div 6$
			uuu. Q8	M	or $\frac{6}{6+20+33} \times x = 24$
					or <b>M1</b> for $\frac{24}{2} \times 11$ or $\frac{24}{2} \times 13$ soi
					or $\frac{24}{3} \times 10$ or $\frac{24}{3} \times 13$ soi oe or $24 \div 6$ soi
	(d)		17[.00]	3	<b>M2</b> for $20.40 \div \left(1 + \frac{20}{100}\right)$ oe
					or M1 for (100 + 20)% oe associated with 20.40 seen

35				C10 1 006	3.54	
	2	(a)	(i)	$640 \times 1.02^6$ oe = 720.7	M1 B1	Must be seen
			(ii)	3.02 or 3.020 to 3.024 nfww	4	M3 for $[x = ] \sqrt[4]{721 \div 640}$ or better (implied by answer of 1.03[02] or $r = 0.0302[4]$ or M2 for $(their\ x)^4 = 721 \div 640$
						or <b>M1</b> for $640 \times (their x)^4 = 721$ oe
		(b)		874.8[0] final answer	2	<b>M1</b> $1200 \times (1 - 0.1)^3$ oe
36	1	(a)		6	3	<b>B2</b> for $5\frac{1}{4}$ or 5.25 shown in working isw
						or M1 for $\frac{3}{4}$ × 7 soi by answer 5
		(b)		21.45 cao final answer	2	<b>M1</b> for 17.16 × 0.25 or 17.16 × 1.25
		(c)		16.5[0] nfww	3	<b>M2</b> for 17.16 ÷ 1.04 oe or <b>M1</b> for 17.16 associated with 104[%] oe isw
		(d)		1.34 cao final answer	2	M1 for 13.32 ÷ 0.72 soi by 18.5[0] or for any correct complete longer method If zero scored, SC1 for 0.96 [euros] seen
		(e)	(i)	750	1	
			(ii)	4.7 cao	3	<b>B2</b> for 4.658 to 4.66 or <b>M2</b> for $\sqrt{their(\mathbf{e})(\mathbf{i}) \div 11\pi}$ or <b>M1</b> for $11\pi r^2 = their(\mathbf{e})(\mathbf{i})$
			(iii)	6	2	M1 for $2^3$ or $\frac{1}{2^3}$ oe seen or for $\pi \times (2 \times their (e)(ii))^2 \times 22$
						If zero scored, SC1 for answer 6 000
		<b>(f)</b>		8950	1	
		(g)		210	2	<b>M1</b> for 0.07 × 3 000
		(h)		160 000	3	M2 for $2 \times 60 \times 100^3 \div 750$ oe or M1 for figs 16 as answer or $100^3$ seen
				www.Q8	M	aths.com

		512		M1.6 512
37 1	1 (a)	(i) $\frac{512}{7+11+14} \times 14$	M2	or <b>M1</b> for $\frac{512}{7+11+14}$
		(ii) 112	1	
	<b>(b)</b>	10100	2	<b>M1</b> for 224 × 45 soi by 10080
	(c)	19	2	M1 for 224 ÷ 12 soi by 18.66 to 18.67 or 18.7 or $18\frac{2}{3}$
	(d)	(i) 4093000	1	
		(ii) $4.093 \times 10^6$	1FT	FT their (d)(i)
	(e)	198 or 198.1 to 198.2	3	<b>M2</b> for $\frac{8.2 - 2.75}{2.75} \times 100$ oe
				or <b>M1</b> for $\frac{8.2}{2.75} \times 100$ or $\frac{8.2 - 2.75}{2.75}$
38	1 (a)	(i) 3.9[0]	2	M1 for 2.6 ÷ 2
		(ii) $\frac{13}{18}$ cao	2	<b>B1</b> for any correct unsimplified fraction
		(iii) 24	3	<b>M2</b> for 9 ÷ 0.375 oe or
				<b>M1</b> for associating 9 with (100 – 62.5)%
	<b>(b)</b>	109 cao	3	<b>B2</b> for 108.5 to 108.6 or
				<b>M1</b> for $250 \times \left(1 - \frac{8}{100}\right)^{10}$ oe
39 1	(a)	$\frac{1.5}{100} \times 450000$ oe	1	Accept equivalent methods
	(b)	6000	3	M2 for 6750 ×100 oe 112.5 or M1 for 112.5% associated with 6750 oe
	(c)	376.25 cao final answer	2	<b>B1</b> for 21.5 and 17.5 seen
	(d)	22.4	2	$M1$ for $200^2$ or $2^2$ seen oe
	(e)	5184	2	<b>M1</b> for $12 \times 16 \times 27$
	<b>(f)</b>	9023	3	M1 for 12000 ÷ 1.33 A1 for 9022.55 to 9022.56 or 9022.6 or 9020 B1indep for their answer rounded to the nearest euro if possible

		<del>-</del>	•	,
40 1	(a)	$\frac{8}{8+15+9} \times 640$ oe	1	With no errors seen
		300 and	,	D1 for each
		180	2	B1 for each or SC1 for answers reversed
	(c)	10 nfww	2	<b>M1</b> for 160 ÷ 15.25 implied by 10.5 or 10.49 nfww
	(d)	7 24	3	<b>M1</b> for $\frac{3}{8} + \frac{1}{3}$ oe
				<b>M1dep</b> on previous <b>M1</b> for $1 - their(\frac{3}{8} + \frac{1}{3})$ oe
41 5	(a)	6250	3	<b>M2</b> for $\frac{6000}{100-4} \times 100$ oe
	(b)	4441	3	or <b>M1</b> for 6000 associated with 96 [%] <b>B2</b> for 4441.1 to 4441.2 or 4440
				or <b>M1</b> for $\frac{6000}{1.351}$
			CP.	
		uuu.Q8		aths.com

42	1	(a)	(i)	48	2	M1 for $\frac{72}{3}$
			(ii)	32.4[0]	1	
			(iii)	13 30	2	<b>M1</b> for $\frac{72 - their(ii) - 8.4}{72}$ oe
			(iv)	24	3	M2 for $\frac{19.2}{0.8}$ oe or M1 for recognising 19.2 is 80%
		(b)	)	660	3	M2 for $\frac{550 \times 2 \times 10}{100} + 550$ oe or M1 for $\frac{550 \times 2 \times 10}{100}$ oe
		(c)		663.9[0]	2	<b>M1</b> for $550 \times 1.019^{10}$ oe
		(d)		1.5[0]	3	M2 for $\sqrt[10]{\frac{638.3[0]}{550}}$ oe or M1 for $550 \times m^{10} = 638.3[0]$
43	1	(a)	(i)	12 45 [pm]	2	<b>B1</b> for 2045 seen or 845 pm seen or [0]135 seen
			(ii)	788 or 787.8 to 788.1	2	<b>M1</b> for 8800 ÷ 11h 10 mins oe
		(b)	(i)	4230[.00]	2	M1 for 2350 ÷ 5 oe
			(ii)	22.2 or 22.2	1	
		(c)	(i)	3808 final answer	2	<b>M1</b> for $2240 \times \frac{100 + 70}{100}$ oe
			(ii)	800	3	<b>M2</b> for $2240 \div \frac{100 + 180}{100}$ oe
		(d)	(i)	1130	4	or <b>M1</b> for 2240 associated with 280% <b>M3</b> for (826.5[0] – 12 × (28 + 6.5[0])) ÷ 1.25 seen  or <b>M2</b> for 826.5[0] – 12 × (28 + 6.5[0]) seen  or <b>M1</b> for 12 × (28 + 6.5[0]) seen
			(ii)	\$146.9[0] final answer	2FT	FT $their(d)(i) \times 0.13$ correctly evaluated If answer not exact to at least 3 sf or better M1 for $their(d)(i) \div 10 \times 1.3$

44	1 (a)	(i) 36600	3	<b>M2</b> for $6100 \div 2 \times (2 + 7 + 3)$ oe or <b>M1</b> for $6100 \div 2$ soi
		(ii) $16\frac{2}{3}$ or 16.7 [16.66 to 16.67]	1	
	(b)	1231708 final answer nfww	5	M4 for 5964 × 15 + 28400 × 35 + 8236 × 18 or M3 for 5964 × 15 and 28400 × 35
				or for $5964 \times 15 + 42600 \times their$ decimal $\frac{2}{3}$
				$\times$ 35 + (42600 – 5964 – 42600 × their
			No.	$decimal \frac{2}{3}) \times 18$
			N. A. C.	or <b>M2</b> for 5964 × 15 <b>or</b> 28400 × 35
				or for $42600 \times their$ decimal $\frac{2}{3} \times 35$
				or <b>M1</b> for $0.14 \times 42600$ or $42600 \div 3 \times 2$
	(c)	27.2[0] nfww	5	<b>M2</b> for 23.80 ÷ 0.7 oe or <b>M1</b> for 23.80 associated with 70% oe
				and <b>M2</b> for <i>their</i> $(23.80 \div 0.7) \times 0.8$ or <b>M1</b> for <i>their</i> $(23.80 \div 0.7) \times 0.2$
45	1(a)(i)	275.31	2	<b>M1</b> for $90 \times 23.15 + 1885 \times 13.5$ oe
	1(a)(ii)	3202	3	<b>M2</b> for $\frac{198.16 - 90 \times 0.245}{0.055}$ oe
				<b>M1</b> for $90 \times 0.245$ or $90 \times 24.5$ oe
	1(b)	17.[0] or 17.00 to 17.01	2	<b>M1</b> for $13.5 \times \left(1 + \frac{8}{100}\right)^3$
	1(c)(i)	40	3	<b>M2</b> for $\frac{7.7 - 5.5}{5.5}$ [×100] oe or $\frac{7.7}{5.5}$ ×100
				or <b>M1</b> for $\frac{7.7}{5.5}$ oe
	1(c)(ii)	11.9 or 11.86 to 11.87	3	<b>M2</b> for $\sqrt[3]{\frac{7.7}{5.5}}$ oe
			n	or <b>M1</b> for $5.5 \times x^3 = 7.7$ oe
	1(d)	150 [million] oe	2	<b>M1</b> for 390 [million] ÷ ( 5 + 2 + 6)
	1(e)	250 nfww	3	<b>M2</b> for 258.25 ÷ ((100 + 3.3) ÷ 100) or <b>M1</b> for 258.25 associated with 103.3[%]

46	1(a)	2915	2	<b>M1</b> for 10 494 ÷ (13 + 5) oe
	1(b)	1056	2	<b>M1</b> for $384 \div (10 - 6)$ oe
	1(c)(i)	52.2 or 52.17	2	M1 for $20 \div 23$ or $20 \times 60$ or $23 \div 60$ isw If zero scored, SC1 for answer 52.6 (from use of 0.38)
	1(c)(ii)	63[.0] or 63.03 to 63.05	5	<b>M4</b> for $\frac{their 52.1732}{32} \times 100$ oe
				or <b>M3</b> for their 52.17 – 32 oe or 32
				$\frac{their}{32} \frac{52.17}{32} \times 100$ oe
				OR <b>B2</b> for $\frac{5}{8}$ [hours] oe or 37.5 [minutes]
		Silling the state of the state		or M1 for $20 \div 32$ or better
				and <b>M2</b> for $\frac{their 37.5 - 23}{23} \times 100$ oe
				or <b>M1</b> for $\frac{their 37.5 - 23}{23}$ or $\frac{their 37.5}{23} \times 100$
	1(d)	0.06 final answer nfww	3	M1 for 11.99 ÷ 0.9276 or 12.99 × 0.9276 A1 for 12.93 or 12.925 to 12.926
	1(e)	9750	3	<b>M2</b> for $7605 \div \left(1 - \frac{22}{100}\right)$ oe
				or M1 for (100 – 22)[%] correctly associated with 7605 seen
47	1(a)	$\frac{9}{9+7+4} \times 680$	1	
	1(b)	238 136	3	<b>B2</b> for 238 or 136
			Harrie C.	or <b>M1</b> for $\frac{7}{9+7+4} \times 680$ oe or
				$\frac{4}{9+7+4} \times 680 \text{ oe seen}$
	1(c)	272	2	<b>M1</b> for 306 ÷ 1.125
	1(d)	1.37	3	M2 for $(17.56-5\times2.69) \div 3$ or M1 for $17.56-5\times2.69$
		www. <b>28</b>		or <b>B1</b> for 13.45 [cost of apples]
	1(e)	40.8[0]	3	<b>3FT</b> for $0.3 \times their$ 136 from part (b)
				or <b>M2</b> for <i>their</i> $136(\frac{1}{2} + \frac{1}{5})$ or better
				or <b>M1</b> for their $136 \times \frac{1}{2}$ or their $136 \times \frac{1}{5}$
				or <b>B1</b> for 68 or 27.2 or $\frac{3}{10}$ or 0.3 seen
1				

48 3(a)	6.06 or 6.060 to 6.061	3	M2 for $\frac{82500 - 77500}{82500} [\times 100]$ oe or M1 for $\frac{77500}{82500} [\times 100]$ soi
3(b)	13 674 cao	3	M1 for $12000 \left(1 + \frac{2.2}{100}\right)^6$ A1 for $13673.7$
49 1(a)(i)	85	1	
1(a)(ii)	455	2	<b>M1</b> for $260 \div 20 \times 35$ oe
l(a)(iii)	61	3	B2 for 61.5 seen or M1 for 2000 ÷ 650 soi or for $\frac{x}{2000} = \frac{20}{650}$ oe or other attempt at scaling up with 650 or for 650 ÷ 20 oe
1(b)(i)	40	3	M2 for $\frac{1.89 - 1.35}{1.35}$ [× 100] oe or $\frac{1.89}{1.35} \times 100$ oe or M1 for oe $\frac{1.89}{1.35}$ [×100] soi
1(b)(ii)	1.75 nfww	3	M2 for $1.89 \div \left(\frac{100 + 8}{100}\right)$ or better or M1 for $1.89$ associated with $108$ [%]
1(c)	10.1 or 10.06	3	<b>M2</b> for $\sqrt[3]{\frac{20.8}{15.6}}$ oe
1(d)(i)	14:15	3	or M1 for $15.6 \times k^3 = 20.8$ oe B2 for correct unsimplified 3 term ratio A: B: C or correct unsimplified two term ratio A: C
	www.Q8	M	or M1 for attempt to find common multiple of 4 and 10 or other common value for B  or for $7 \times \frac{4}{10}$ oe or $3 \times \frac{10}{4}$ oe
1(d)(ii)	147	3	M2 for $\frac{45}{15}$ (14 + 20 [+15]) oe or 45 ÷ 3 × 4 + (45 ÷ 3 × 4) ÷ 10 × 7 [+ 45] or M1 for 45 ÷ 3 oe or 45 ÷ <i>their</i> (d)(i) value for C shown

50	1(a)	16.5 or 16.49	3	<b>M2</b> for $\frac{1.13 - 0.97}{0.97} [\times 100]$ oe or $\frac{1.13}{0.97} \times 100$ oe
				or <b>M1</b> for $\frac{1.13}{0.97}$ oe
	1(b)(i)	35	2	<b>M1</b> for $60 \div (5+7)$
	1(b)(ii)	140	1	
	1(c)	\$1.26 final answer	3	<b>B2</b> for 1.259 or 1.26 but not as final answer or <b>M1</b> for 2.25 ÷ 0.9416
			No.	If 0 scored, <b>SC1</b> for 1.13 × 0.9416
	1(d)	15[.0]	3	<b>M2</b> for ${}^{21}\sqrt{\frac{58000}{1763000}}$ oe
		Silling the same of the same o		or <b>M1</b> for $58000 = 1763000 (k)^{21}$
	1(e)	1239.75	2	<b>B1</b> for 43 + 0.5 or 28 + 0.5 oe seen
_				
51				
	1(a)(i)	14, 10	2	<b>M1</b> for $24 \div (7 + 5)$
	1(a)(ii)	3	2	<b>B1</b> for correct fraction not in lowest terms
		$\frac{3}{350}$		
	1(a)(iii)	120	1	
	1(b)(i)	10.2[0]	2	M1 for $\frac{15}{100} \times 12$ oe or better
	1(b)(ii)	45	2	M1 for $\frac{38.25}{1 - \frac{15}{100}}$ oe
	1(c)(i)	85 www. Q8	2	M1 for $\frac{500\times1.7\times10}{100}$ oe
	1(c)(ii)	203 or 202.5 to 202.6	2	<b>M1</b> for $200 \times \left(1 + \frac{0.0035}{100}\right)^{365}$
	1(c)(iii)	1.9		<b>M2</b> for $\sqrt[6]{\frac{559.78}{500}}$
				or <b>M1</b> for $500 \left( 1 + \frac{r}{100} \right)^6 = 559.78$

_			<u> </u>	
52	2(a)	1:5:12	2	<b>M1</b> for 2: 10: 24 or 7: 35: 84 or $\frac{1}{18}$ : $\frac{5}{18}$ : $\frac{12}{18}$
	2(b)(i)	266 and 95	3	<b>B2</b> for 266 or 95 or 266 and 95 reversed or <b>M1</b> for $\frac{114}{6}$
	2(b)(ii)	15	2	M1 for $\frac{114-96.9}{114}$ [× 100] oe
				or $\frac{96.9}{114} \times 100$
	2(2)(i)	21. 50min		114
	2(c)(i)	2h 50min	1	
	2(c)(ii)	636	2	<b>M1</b> for 1802 ÷ <i>their</i> 2h 50min
53	3(a)(i)	43	1	
	3(a)(ii)	65	1	
	3(a)(iii)	13	1	
	3(b)	80	3	<b>M2</b> for $\frac{400}{18} \times \frac{60 \times 60}{1000}$ oe
			10000	Or <b>M1</b> for $\frac{400}{18}$
				or for <i>their</i> speed in m/s $\times \frac{60 \times 60}{1000}$
				or for $\frac{400}{1000}$ and $\frac{18}{60 \times 60}$ soi
			Haran Co	
		uuu. Q8	M	aths.com