Plane Geometry

www.Q8Maths.com

4	1	1				
1	9 (a) (i)	Similar	1	Allow enlargement		
	(ii)	4.5	2	M1 for $\frac{AX}{3} = \frac{9}{6}$ oe		
	(iii)	13.5 cao	2	M1 for $\left(\frac{3}{2}\right)^2$ or $\left(\frac{2}{3}\right)^2$ or e.g. using base and		
	(iv)	180 - x - y oe 180 - x oe	B1 B1	height but other methods must be complete		
	(b) (i)	96	1			
	(ii)	48 ft	1 ft	ft 0.5 their (b)(i)		
	(iii)	97 ft	1 ft	ft 145 – their (b)(ii)		
	(iv)	35	1	A MARKAN A		
	(c)	$20n = 360 \text{ oe or } \frac{180(n-2)}{n} = 160 \text{ oe}$ or $180(n-2) = 8 \times 360 \text{ oe}$ or $8\left(\frac{360}{n}\right) = 180 - \frac{360}{n}$	M2	M1 for $9e = 180$ oe allow diagram to show this if reasonably clear or M1 for 8×360 or $\frac{8 \times 360}{n}$		
		18 www 3	A1			
2	5 (a) (i)	Similar		Accept enlargement		
	(ii)	27	2	M1 for $\frac{PQ}{P} = \frac{3}{2}$ or		
		2.1		3.6 4		
	(iii)	3.15	2	M1 for $\left(\frac{3}{4}\right)^2$ or $\left(\frac{4}{3}\right)^2$ o.e seen		
				If $\frac{1}{2}ab\sin C$ used or base and height used then		
				must be full method for M1		
	(b) (i)	29	1			
	(ii)	61 ft	1 ft	ft 90 – their (i) if (i) is acute		
	(iii)	61 ft	1 ft	ft their (ii) if their (ii) is acute, but can recover		
	(iv)	119 ft	1 ft	ft 180 – their (iii)		
	(c) (i) (ii)	20 110		M1 for adding 6 angles going up 4 each time and M1 (indep) for 720 seen and not spoiled (6A + 60 = 720 o.e. scores M2)		

3	7 (a) $w = 59$ (angle in) isosceles (triangle)	1 1	The marks for the reasons are dependent on the correct angle or correct ft angle Any incorrect statement in reason loses that mark
		x = 31 (angle in) semicircle (= 90) oe	1ft 1	ft 90 – their <i>w</i> Allow diameter
		y = 62 (angles in) same segment or (on) same arc (are =)	1 1	
		z = 28 (angles in) triangle (= 180)	1ft 1	ft 180 – their $(w + x + y)$ or 90 – their y
	(lt) (i) $\begin{pmatrix} 2\\ 3 \end{pmatrix}$	1	
		(ii) $\begin{pmatrix} -2 \\ 4 \end{pmatrix}$	2ft	ft $\begin{pmatrix} 0 \\ 7 \end{pmatrix}$ – their (i)
				B1 ft for one correct element
	(c) (i) $\frac{1}{3}$ t final answer	1	
		(ii) $\frac{1}{3}(-\mathbf{t}+\mathbf{r})$ final answer	2	M1 for correct unsimplified answer or $TR = -\mathbf{t} + \mathbf{r}$ oe
				or $TP = \frac{1}{3}TR$ oe
		(iii) $\frac{1}{3}$ r final answer	2	M1 for correct unsimplified answer or $QT + TP$ oe for any correct path
				or $\frac{1}{3}$ t + their (ii)
		(iv) $QP = \frac{1}{3}OR$ oe	1dep	Dependent on correct answer in (iii)
		<i>QP</i> is parallel to <i>OR</i> or r	1dep	Dependent on multiple of r as answer in (iii)
		uuu. Q8	M	aths.com

4	4 (a)	$(\cos(A)) = \frac{6^2 + 8^2 - 9^2}{2.6.8}$	M2	M1 for correct implicit equation with cosA
		78.58 www.4	A2	A1 for 0.1979 to 0.198 (this implies M2)
	(b)	(i) 78.6	1	Allow 78.58
		(ii) $r = \frac{4.5}{\sin(78.6)}$ oe	M2	(M1 for $\sin(78.6) = \frac{4.5}{r}$)
		4.59 0 to 4.591 cao www 3	A1	Allow 78.58 or their angle <i>BOM</i> for M2 or M1
	(c)	35.5 (35.48 to 35.57) cao www 4	4	M1 Area triangle = $0.5 \times 6 \times 8 \times \sin(78.6)$ oe Allow 78.58 (23.52) M1 Circle = $\pi \times 4.59^2$ Allow 4.590 to 4.591 (66.15 to 66.22) M1 (dependent) % = triangle / circle × 100 Dependent on first 2 M's
5	3 (a)	(i) 50 www3	3	B1 for angle ADB or $ABD = 70$ B1 for angle $DBC = 80$
		(ii) Angle $DCB \neq$ angle CBE oe	1	Accept angle $CDB \neq$ angle ABD
	(b)	12	B3	M2 for $\frac{5n}{2} = \frac{360}{n}$ oe
				or M1 for 360 soi
	(c)	65 www	3	OAC = 25, CAB = 25, OBA = 50, BOC = 50, AOB = 80, AOC = 130 B1 each, max 2
6	4 (a)	90	B1	
	(b)	$tan(ACB) = 7 \div 10$ oe 34.9(9)	M1 A1	Any longer method must reach equivalent stage
	(c)	same segment	B1	Allow same arc oe
	(d) (i)	11.9 or 11.8(9) www 3	3	M2 for $\frac{7 \times \sin 77}{\sin 35}$
				or M1 for implicit form
	(ii)	38.6 (38.58 to 38.62) www 2	2	M1 for $0.5 \times 7 \times their$ (d)(i) $\times sin(180 - 77 - 35)$ oe
		u/u/u/. 08	M	Allow 68.00 to 68.01 for 68
	(e)	8.69 or 8.7(0) or 8.685 to 8.700 cao www 3	3	M2 for $12.3 \times \left(\frac{10}{their \ 11.9}\right)^2$
				or M1 for $\left(\frac{10}{their \ 11.9}\right)^2$ or reciprocal seen

7	4			In all parts of (a) candidates may refer to angles marked in diagram. Allow if clear even if reason is more complicated as long as it is full. Reasons dependent on correct answers
	(a) (i)	42 Alternate oe	1 1	Not alternate segment
	(ii)	90 semicircle oe	1 1	Allow diameter
	(iii)	42 same segment oe	1 1	same arc
	(iv)	138 cyclic quad oe	1	key words must not be spoiled
	(b)	10.9 (10.90 to 10.91) www 3	3	M2 for $\sqrt{12^2 - 5^2}$ or i.e explicit or M1 for $12^2 = 5^2 + PQ^2$ or i.e implicit Allow full marks for $\sqrt{119}$ as final answer Use of trig method must be complete to explicit expression for possible M2
	(c) (i)	(c) (i) $AD = CD$ and $DE = DG$ (Angle) $CDG = (angle)ADE$ (Sides of) square or 90° + angle ADG oe		Extra pair of sides loses this mark. Extra pair of angles loses this mark As in (a), for all 3 marks allow references to diagram if completely clear. R mark dep on at least one pair of sides stated or pair of angles stated
	(ii)	Congruent	1	CUCCER
8	6 (a)	(x =) 64 www 3	3	B2 for $x + 2x + x = 360 - 114 + 10$ or M1 for $x + 2x + 114 + x - 10 =$
	(b) (i)	$ \begin{array}{c} -1 \\ n^2 \text{ oe} \\ 5n \text{ oe} \\ n^2 + 5n \text{ oe} \end{array} $	1 1 1 1	
	(ii)	20 1111.28	2	M1 for their $n^2 + 5n = 500$ or 20 and 25 seen
	(c)	Final answer $\frac{x-4}{2x-1}$ cao www 4	4	B1 for $(x-4)(x+4)$ B2 for $(2x-1)(x+4)$ or SC1 for $(2x+a)(x+b)$ where either a+2b=7 or $ab=-4$

9	8	(a)	u = v = w	= 24 = 92 = 184	2 1 1ft	SC1 for angle $DBA = 88$ or $u =$ angle CDY ft 2 × their v Allow all seen in diagram
		(b)	10).8	2	M1 for area factor of 3^2 soi e.g. dividing by 9
		(c) (i)) 18	}	2	M1 for $4x + x = 90$ or better
		(ii)	72	2	2ft	ft 90 – their x or 4 × their x M1 for engle K or $L = 00$, their wor 4 × their y
		(iii)	54		1	Allow all seen in diagram
10		7	(a)	(i) 360 ÷ 5	1	Accept longer correct methods
				(ii) (180 – 72) 2	M1	Accept [(5 – 2) × 180] or 360 / 5 M1
				54 × 2	E1	Then $\div 5$ 180 – 72 E1
				(iii) 180 – 90 – 72	1	Accept other methods provided they are fully explained
			(b)	2 × 7 × sin(72/2) oe	M2	M1 for $7 \times \sin(72/2)$ oe <u>Alt methods</u> M2 for $[DC^2 =] 7^2 + 7^2 - 2.7.7 \cos 72$ or M1 for implicit version or M2 for $(7 \sin 72)/\sin 54$ or M1 for $DC/\sin 72 = 7/\sin 54$ oe
				8.228 to 8.229	E1	Dep on M2 and with no errors seen
			(c)	(i) 23.3[0]	2	M1 for $\frac{1}{2} \times 7 \times 7 \times \sin 72$ oe
				(ii) 116.5 to 116.52 or 117	1 ft	ft their (c)(i) \times 5
				(iii) 30.78 to 30.8	2	M1 for $72/360 \times \pi 7^2$
				(iv) 12.66 to 12.67 or 12.7	2	M1 for 7 + 7 cos 36 oe [7 + 5.66] e.g 8.23 cos54 + 8.23 sin72 oe [4.84 + 7.83]
			(d)	1.43 or 1.432 to 1.453 cao	5	B4 for area of rectangle = 168.3 to 169.2 www or area of triangular corners = 51.6 to 52.5 www or B3 for 13.3 to 13.32 seen or M2 for [ZY =] 8.23 + 2(8.23sin18) oe or 2 (8.23 sin 54) or 2 × 7 sin 72 oe or B1 for [CY =] 2.54[3] or 5.08 to 5.09 seen or [AX =] 6.65 to 6.66 seen

11	4	(a)	(i)	148	2	B1 for tangent/radius = 90° seen. May be on diagram
			(ii)	74	1ft	ft <i>their</i> (a)(i) $\div 2$ dep on (a)(i) < 180
			(iii)	21	2	M1 for 360 – 90 – 143 – 32 – <i>their</i> (ii) oe e.g. using quadrilateral <i>AOCD</i>
			(iv)	20.9 or 20.92	3	M2 for 6 tan 74 oe or explicit sine rule Or M1 for implicit version
		(b)	(i)	51	2	M1 for $ABC = 90^{\circ}$. May be on diagram.
			(ii)	56	2	M1 for 39 + 17 or 180 – (73 + <i>their</i> 51) or [<i>AXB</i> =] 180 – (39 + 17)
			(iii)	<u>Angle</u> at <u>centre twice</u> oe angle at <u>circumference</u>	1	
			(iv)	22	1	
			(v)	68.3 or 68.27 to 68.29	3	Allow $\frac{326}{15}\pi$ as final answer
						M2 for $\frac{360-34}{360} \times 2\pi \times 12$ or $2\pi \times 12 - \frac{34}{360} \times 2\pi \times 12$
						or $\pi \times 12 + \frac{180 - 34}{360} \times 2\pi \times 12$
						or M1 for use of $\frac{\theta}{360} \times 2\pi \times 12$
						for $\theta \neq$ multiples of 90 °
				www. 28	M	aths.com

12	8	(a) 24	3	M2 for 24 at <i>B</i> or 128 at <i>X</i> and 28 at <i>D</i> .
				or M1 for 28 at <i>D</i> or 128 at <i>X</i>
				allow on diagram
		(b) 5 www	3	M2 for $360 - 22x = 2 \times 25x$ oe or better
				or $22x = 2(180 - 25x)$ oe or better
				or $11x + 25x = 180$ oe or better
				or M1 for
				P = 11x or reflex $O = 360 - 22x$ or reflex $O = 50x$
			and the	allow on diagram
		(c) 6.32 to 6.34 www	5	B1 for <i>OLM</i> 90° (seen or implied)
				allow on diagram
		all the state		and M1 for <i>LM</i> = 8tan44 [7.7255]
				or $OM = 8 \div \cos 44 [11.1213]$
				and M1dep on previous M for $0.5 \times 8 \times their LM$
				or $0.5 \times 8 \times (their OM) \sin 44$
				and M1 for $\frac{44}{360} \times \pi \times 8^2$ oe [24.5 to 24.6]
13	8 (a) (i) 118	2	M1 for $(3 \times 180 - 2 \times 110 - 84)$ [÷ 2] or better
		(ii) 31	1FT	FT (180 – <i>their</i> (i)) ÷ 2
		(iii) 22	1FT	FT $84 - 2 \times their$ (ii) or $2 \times their$ (ii) - 40, only if positive answer and less than 84
	(b) 32	4	B2 for $360 - 3y = 2(4y + 4)$ oe
				B1 for $11y = 352$ oe
				or M1 for angle at centre = $2 \times$ angle at circumference soi
	((i) Opposite angles [cyclic quad] add to 180	1	
		(ii) 68	3	M1 for [angle <i>PRS</i> =] $102 \div 3 \times 2$
		www. (28		and M1 for angle PQS = angle PRS or angle PRQ = angle PSQ
	(d) 5.75	3	M2 for 6.9 $\times \sqrt{\frac{5}{7.2}}$ oe
				or M1 for evidence of ratio of areas = (ratio of sides) ² or sf = 1.2

14	4	(a)		227 or 226.95 to 227.01	2	M1 for $\pi \times 8.5^2$
		(b)		5.35	1	
		(c)		39.0[0] to 39.0[1]	2	M1 for sin [<i>MOB</i>] = $\frac{their \ b}{8.5}$ oe Dep on their $b < 8.5$
		(d)		30.2 or 30.3 or 30.24 to 30.27	3	M2 for $\frac{360-4\times39}{360}\times2\times\pi\times8.5$ oe
		(e)		AB = BC $TA = TC$ $TB = TB$		or M1 for $\frac{a}{360} \times 2 \times \pi \times 8.5$ oe where $0 < a < 360$ Implied by 5.78 to 5.79 or 11.5 to 11.6 or 23.14 to 23.15 or 23.1 or 23.2 or 41.83 to 41.84 or 41.8 isw comments or reasons
					ALL ALL	oe [SSS] and no mention of angles
15	8	(a)	(i) (ii) (iii)	27 54 153	1	
		(b)	(i)	59.6 or 59.57 www	4	M2 for $45^2 + 32^2 - 2 \times 45 \times 32 \times \cos 100$ or M1 for implicit cos rule and A1 for 3549
			(ii)	22.[0] or 21.99 www	3	M2 for $324 \div (\frac{1}{2} \times 32 \times \sin 67)$ or M1 for $[324 = \frac{1}{2} \times 32 \times x \times \sin 67)$
			(iii)	81[.0]	2	B1 for 2^2 or $(\frac{1}{2})^2$ oe seen or $\frac{1}{2} \times 16 \times \frac{1}{2}$ their(b)(ii) $\times \sin 67$
16	4	(a)		48 and 84 66 and 66	2	B1 for each pair
		(b)		540	2	M1 for 3×180 or $(2 \times 5 - 4) \times 90$ or $5 \times (180 - 360 \div 5)$ oe
		(c)	1	620	2	M1 for $7 \times 360 - their 540 - 360$
		(d)	(i) 2 1	x + 5 + 3y - 20 + 4x - 5 + x + y - 0 = 360 oe	1	Allow partial simplification but not $7x + 4y - 30 = 360$
			(ii) 2	4x + 5 + 3y - 20 = 180	1	
			(iii) [:	x = 30, [y = 345 nfww]	4	M1 for correct multiplication M1 for correct elimination A1 $x = 30$ or $y = 45$
						If 0 scored SC1 for correct substitution to find the other variable
			(iv) 6	5, 115, 115, 65	1	Accept in any order

17	6	(a)	(i)	[<i>x</i> =] 21, [<i>y</i> =] 42	2	B1 B1
			(ii)	3.79 or 3.8[0] or 3.792 to 3.802	2	M1 for $\frac{3.31}{TQ} = \frac{8.23}{9.43}$ oe
						or $\frac{\sin 21 \text{ or } \sin t \text{ heir } x}{TQ} = \frac{\sin 117}{9.43}$ oe
		(b)		40	4	B3 for angle between <i>HE</i> and tangent = 25 or $GFH = 40$ or $EGH = 25$ and angle $EHG = 115$ (accept
						90 and 25 at <i>H</i> for 115) B2 for angle <i>EGH</i> = 25 or angle <i>EHG</i> = 115 (accept 90 and 25 at <i>H</i>
						B1 for angle $FEG = 25$ or angle $EFG = 65$
		(c)		38	5	B4 for angle $ADC = 104$ or M4 for $x + 14 + 20 + x + 70 = 180$ or better
						or B3 for angle <i>OBA</i> = 20 and angle <i>OBC</i> = 56 or angle <i>CBA</i> = 76 or reflex angle <i>AOC</i> = 208
						or B2 for angle OAB or $OBA = 20$ and angle $ACB = 70$
						or obtuse angle <i>AOC</i> = 152 or angle <i>BOC</i> = 68
						or B1 for angle <i>OAB</i> or <i>OBA</i> = 20 or angle <i>ACB</i> = 70
18	11		$\frac{1}{3}$		1	Allow equivalent decimal throughout (3sf or better where necessary)
			72 360	; oe	1	
			$\frac{1}{4}$		2	M1 for $\left(\frac{1}{2}\right)^2$ or $(2)^2$ or $1^2 : 2^2$ or $2^2 : 1^2$ oe seen
			$\frac{1}{6}$		2	M1 for $[X=6 \times] 0.5 \times l^2 \times \sin 60$ or $[X=6 \times] 0.5 \times l^2 \times \sin 120$ Or recognition that the area of the obtuse
				uuu. Q8	M	angled triangle shaded is equal to the area of one of the 6 equilateral triangles from the centre
			$\frac{\pi}{\pi}$	$\frac{2}{\pi}$ or $1 - \frac{2}{\pi}$ or 0.363 or 0.3630 to	4	If fraction given as answer, check if it falls into range
			0.50			B1 for [sector=] $\frac{1}{4}\pi r^2$ oe
						B1 for [triangle =] $\frac{1}{2}r^2$ oe
						M1dep for $\frac{\text{their sector} - \text{their triangle}}{\text{their sector}} dep$
						on B1B1 earned

19	7 (a)	(i)	1	48	1	
		(ii)	1	22	2	B1 for 58 seen at <i>A</i> or 32 seen at <i>Y</i>
		(iii)	1	48	1	
		(iv)	1	06 nfww	3	B1 for [sum of interior angles =] 720
						and M1 for $\frac{1}{2}$ {(<i>their</i> 720) – (<i>p</i> + <i>q</i> + <i>t</i> +90)}
	(b)	(i)	6	33	2	B1 for angle $RPS = 27$ or 90 at <i>P</i> or at <i>S</i> seen or stated
		(ii)	5	4	2	B1 for <i>their x</i> or 63 or letter <i>x</i> at <i>Q</i> seen or state
20	3	(a)	(i)	52 Angles in same segment	1 1dep	Accept same arc, same side of same chord
			(ii)	104 Angle at centre is twice angle at circumference	1	Accept double, 2 × but not middle, edge
		C	iii)	34 Angle between tangent and radius = 90°	1 1	Accept right angle, perpendicular
		(b)	(i)	7.65 to 7.651	4	M2 for $8.92 + 72 - 2 \times 8.9 \times 7 \times \cos 56$
						M1 for correct implicit formula
						A1 for 58.5 to 58.6
			(ii)	49.3 or 49.33 to 49.34	3	M2 for [sinBEC =] $\frac{7\sin 56}{their(\mathbf{b})(\mathbf{i})}$ oe
			P			or sin 56 sin BEC
						M1 for $\frac{\sin 300}{their (\mathbf{b})(\mathbf{i})} = \frac{\sin 300}{7}$ oe
				antantant OX		attername
				www.ZO		unis,com

21	7	(a)		$\frac{1}{2} \times 8 \times 8 \times \sin 56$ oe	M1	or $[\frac{1}{2} \times 2]$ 8sin28 × 8cos28 or $[\frac{1}{2} \times 2] \times 7.06 \times$
				2 26.52 to 26.53	A1	3.75
		(b)	(i)	72.[0] or 71.87 to 72.0	3	M2 for 26.5/($\pi \times 6.5^2$) × 360 oe
						or M1 for $\frac{x}{360} \times \pi \times 6.5^2 = 26.5$ or better
			(ii)	21.1 or 21.2 or 21.14 to 21.17	3	M2 for $\frac{\text{their (b)(i)}}{360} \times \pi \times 2 \times 6.5 + 2 \times 6.5$ oe their (b)(i) their (c)
						or M1 for $\frac{metr(\mathbf{b})(\mathbf{l})}{360} \times \pi \times 2 \times 6.5$ oe or $\frac{metr(\mathbf{a})}{0.5 \times 6.5}$
		(c)	(i)	$\frac{30}{360} \times \pi \times r^2 - \frac{1}{2} \times r^2 \times \sin 30 \text{ oe}$	M2	M1 for $\frac{30}{360} \times \pi \times r^2$ or $\frac{1}{2} \times r^2 \times \sin 30$
				$\frac{1}{12} \times \pi \times r^2 - \frac{1}{4} \times r^2$	A1	
				$\frac{1}{4}r^2\left(\frac{1}{3}\pi - 1\right)$	A1	Dep on M2 A1 and no errors seen
			(ii)	20.6 or 20.7 or 20.55 to 20.71	3	M2 for $[r^2 =] \frac{5}{\frac{1}{4}(\frac{5}{\frac{1}{3}\pi - 1})}$
						or M1 for one correct rearrangement step to r
						from $\frac{1}{4}r^2\left(\frac{1}{3}\pi - 1\right) = 5$
22	9	(a)	(i)	42	2	B1 for $BAC = 90 - 48$
			(ii)	111	2	B1 for 111 or 69 or $ACD = 27$ correctly placed on diagram or indicated
		(b)	(i)	37.7 or 37.69 to 37.704 nfww	2	M1 for $6\pi + 4\pi \pm 2\pi$ oe
			(ii)	12100, 12060, 12070, 12062.4 to 12065.6 nfww	5	SC4 for answer with figs 121 or 1206 to 1207
					Muna 18	M2 for total area = $\frac{1}{2}\pi 6^2 + \frac{1}{2}\pi 4^2 - \frac{1}{2}\pi 2^2$
						or $\frac{1}{2}\pi 60^2 + \frac{1}{2}\pi 40^2 - \frac{1}{2}\pi 20^2$ or
						M1 for $\frac{1}{2}\pi 6^2$ or $\frac{1}{2}\pi 4^2$ or $\frac{1}{2}\pi 2^2$
						or $\frac{1}{2}\pi 60^2$ or $\frac{1}{2}\pi 40^2$ or $\frac{1}{2}\pi 20^2$
				www.Q8	M	A1 for area = 75.39 to 75.41 or 7539 to 7541
						M1 dep for volume = <i>their</i> area × thickness

23	2	(a)	(i)	66	1	
			(ii)	24	1FT	FT 90 – their (a)(i)
			(iii)	66	2FT	FT 90 – <i>their</i> (a)(ii) M1 for [<i>BOD</i> =] 180 – 48 or 180 – 2 × <i>their</i> (a)(ii)
			(iv)	114	1FT	FT 180 – <i>their</i> (a)(iii)
		(b)		83.6 or 83.60[]	2	M1 for $\frac{1}{2} \times 15 \times 15 \times \sin(180 - 48)$ oe
						or $\frac{1}{2} \times 15 \times 15 \times \sin(180 - 2 \times their (a)(ii))$ oe
		(c)		Opposite angles add up to 180 OR Angle in a semicircle [=90]	1	
24	6	(a)	Contract of the	100 nfww	4	M3 for a correct calculation that would lead to the answer or B2 two correct relevant different size angles in <i>their</i> diagram or one relevant angle and total in <i>their</i> polygon or angle EDA + angle FAD = 140 or B1 for one relevant angle or total in <i>their</i> polygon
		(b)	(i)	50	2	B1 for angle $ADC = 80$ or angle $BAC = 30$ or angle $ADB = 50$ soi
			(ii)	41	2FT	FT 91 – <i>their</i> (b)(i) B1 for angle <i>XBC</i> = 41
			(iii)	Similar	1	
		(c)		27.8 or 27.83	2	M1 for evidence of $\left(\frac{11}{10}\right)^2$ or 1.21 or $\left(\frac{10}{11}\right)^2$ or 0.826(4)
		(d)	(i)	60	3	M2 for $\frac{n}{10} = \frac{360}{n}$ oe
				uuu. Q8	M	e.g. $\frac{180(n-2)}{n} = 180 - \frac{n}{10}$ or B1 for exterior sum = 360 or $180(n-2)$ seen
			(ii)	174	2	M1 for $\frac{their n}{10}$ or $\frac{360}{their n}$ for their $n < 1800$

25	5	(a)	37 c	or [angle] BAD	1	
			[An equa	gles in] same segment [are al]	1dep	Dependent on 37 or [angle] <i>BAD</i>
		(b)	74 c 2 [×	or 2 [× angle] <i>BAD</i> or angle] <i>BED</i>	1	
			Ang <u>circ</u>	gle at <u>centre</u> is twice angle at <u>umference</u>	1dep	Dependent on 2 × 37 or 2 [× angle] <i>BAD</i> or 2 [× angle] <i>BED</i> Must use the terms circumference, centre and angle
		(c)	143 or 1	or 180 – [angle] <i>BAD</i> 80 – [angle] <i>BED</i>	1	
			[Op [are	posite angles of] cyclic quad supplementary]	1dep	Dependent on 180 – 37 or 180 – [angle] <i>BAD</i> or 180 – [angle] <i>BED</i>
26	8	(a)	(i)	Angle <i>A</i> is common to both triangles oe	1	Accept $DAB = CAB$ oe
				ADB = ABC Third angle of triangles equal oe	1dep	Dep on previous mark
			(ii)	Similar	1	
			(iii)	8.25	2	M1 for $\frac{16}{12} = \frac{11}{BD}$ oe or better
		(b)	(i)	38	1	
			(ii)	38	1	
			(iii)	78	1	
			(iv)	26	1	
		(c)		36 nfww	5	B4 for an equation in <i>m</i> that simplifies to 5m = 180 or B1 for each of 3 of the listed angles expressed in terms of <i>m</i> , in it's simplest form, stated or labelled on diagram Angle $PQO = m$ Angle $QOR = m$ Angle $OQR = 2m$ Angle $PQR = 3m$ or $180 - 2m$ or $90 + \frac{m}{2}$ Angle $PQR = 180 - m$ or $4m$ or $360 - 6m$ Reflex angle $POR = 360 - 4m$ or $6m$ or $180 + m$

27	7	(a)	360 - 210 [= 150] (180 - 150) ÷ 2 [= 15] or 150 ÷ 2 [=75] and 180 - 75 - 90 [=15]	M1 M1	
		(b)	15.5 or 15.45 to 15.46 nfww	4	M3 for 2 × 8 cos 15 oe or M2 for 8 cos 15 oe or M1 for $\frac{x}{10} = \cos 15$ oe
		(c)	29.5 or 29.4 or 29.39 to 29.50	3	M2 for [sin $ABC =$] $\frac{8 \times \sin 72}{their(b)}$
			51		or M1 for $\frac{\sin ABC}{8} = \frac{\sin 72}{their(b)}$ oe
		(d)	194 or 193.7 to 194.1 nfww	6	M2 for $\frac{210}{360} \times \pi \times 8^2$
					or M1 for $[k] \pi \times 8^2$ seen
					and M1 for $\frac{1}{2} \times 8^2 \times \sin 150$ oe
					and M2 for $\frac{1}{2} \times 8 \times their$ (b) \times sin(108 – their (c)) oe or B1 for [angle $CAB=1108$ – their (c)
		(e)	12.1 or 12.11 to 12.13	2FT	FT their (d) $\div 4^2$ oe
					M1 for 4^2 or $\left(\frac{1}{4}\right)^2$ soi
28	2(a)		122 Market Constrained of the second se	4	B3 for 238 or 61 or 58 correctly identified in working or on diagram or B2 for 952 seen or 74 or 119 or 29 correctly identified in working or on diagram OR Method 1 using sum of interior angles M1 for $(8 - 2) \times 180$ or 1080 isw M1 for $their 1080 - 4 \times 32$ M1 for $360 - their 952 \div 4$ OR Method 2 using isosceles triangles and square M1 for $(180 - 32) \div 2$ or for 90 M1 for $their 74 \times 2 + 90$ or $90 - their 74$ M1 for $360 - their 74 \times 2 + 90$ or $90 + 2(90 - their 74)$ OR Method 3 using four kites joined to centre M1 for $(360 - (their 90 + 32)) \div 2$ M1 for $2(180 - their 119)$ OR Method 4 using square around outside M1 for $(90 - 32) \div 2$ M1 for $(90 - 32) \div 2$ M1 for $180 - 2(their 29)$

	2(b)	105	3	M2 for $360 = 2 \times y + (2y - 60)$ oe or $2(180 - y) = 2y - 60$ oe
				or B1 identifying in working or on diagram a relevant angle in terms of y
29	8(a)	18	3	B2 for 20 nfww or M1 for $8x + x = 180$ or better
	8(b)	32	3	B1 for angle <i>DBC</i> = 58 B1 for angle <i>BCD</i> = 90
	8(c)(i)	24	2	B1 for angle $PRQ = 24$
	8(c)(ii)	29.4 or 29.40 to 29.41	3	M2 for $\frac{360-48}{360} \times 2 \times \pi \times 5.4$ or B2 for answer (minor arc) 4.52 or 4.523 to 4.524 or M1 for $\frac{48}{52} \times 2 \times \pi \times 5.4$
30	9(a)(i)(a)	62 and Isosceles [triangle] and Angle at centre is twice angle at circumference oe	3	$\frac{360}{B2 \text{ for } 62 \text{ and one correct reason}}$ or B1 for 62 with no/wrong reason or for angle $EOD = 124 \text{ soi}$ or for no/wrong angle with correct reason
	9(a)(i)(b)	62 and [Angles in] same segment oe or angle at centre is twice angle at circumference oe	2	2FT <i>their</i> (a)(i)(a) and correct reason B1FT for <i>their</i> (a)(i)(a) with no/wrong reason or for no/wrong angle with correct reason
	9(a)(ii)	8	3	M2 for (180 –109) – 28 – 35 oe or M1 for [angle <i>AED</i> =] 180 – 109 oe
	9(b)(i)	24	3	x = ext angle B2 for [x =] 15 isw or M1 for x + 11x = 180 oe or for $\frac{180(n-2)}{[n]} = \frac{360}{[n]} \times 11$
	9(b)(ii)	3960 WWW.Q8	2	FT (<i>their</i> 24 – 2) × 180 dep on (b)(i) an integer and > 6 M1 for (<i>their</i> 24 – 2) × 180 oe or <i>their</i> 24 × 11 × <i>their</i> 15 oe or 11 × 360

33	4(a)	38.6	3	M2 for $[2 \times]$ (8 5 + 0.05 + 10.7 + 0.05)
	.()			
				or M1 for 8.5 ± 0.05 or 10.7 ± 0.05
	4(b)(i)	8.86 or 8.863	2	M1 for $\frac{h}{9} = \sin 80$ or better oe
	4(b)(ii)	\angle CDF = 100 leading to \angle DCF = 40 Or	M1	Implied by $180 - (100 + 40) = 40$ or
		\angle EDF = 80 leading to \angle DCF = 40		80 - 40
		'two equal angles'	A1	With no incorrect work seen
	4(b)(iii)	66.5 or 66.45 to 66.47	3	M2 for $0.5(3 + 12) \times their (b)(i)$ or $12 \times their (b)(i) - 0.5 \times 9 \times 9 \times sin 100$ oe
		Summer		or B1 for $DC = 9$ or $BC = 3$
	4(c)	130 nfww or 129.6 to 129.8	5	B1 for $\angle ACD = 21^{\circ}$ or $\angle CAD = 69^{\circ}$
				Method 1
				M2 for $\cos 21 = \frac{12}{4C}$ oe
				or M1 for $\angle ADC = 90$ soi
				M1 for π (<i>their AC</i> /2) ²
				OR Method 2
				M2 for $\frac{12}{sin138} = \frac{r}{sin21}$ oe
				or M1 for $\angle COD = 138$ soi
				M1 for π (<i>their r</i>) ²
				OR Method 3
				M2 for $\cos 21 = \frac{6}{\text{OC}}$ oe
		www. Q8	M	or M1 for \angle CXO = 90 soi where X is the point where the perpendicular from O meets the chord CD
				M1 for π (<i>their</i> OC) ²
	4(d)	78.4 or 78.37 to 78.41	3	M2 for
				$\frac{x}{360} \times 2 \times \pi \times 9.5 + 2 \times 9.5 = 4 \times 8 \text{oe}$
				or M1 for $\frac{x}{360} \times 2 \times \pi \times 9.5$
				After M0 , SC1 for $9.5x + 19 = 32$ oe