sequences

www.Q8Maths.com

1				
1	11 (a)	Reasonable diagram, 25, 13, 62	4	B1 B1 B1 B1 diagram may be freehand
	(b)	64, 19, 146	3	B1 B1 B1
	(c)	n^2 oe 2n+3 oe	2	B1 B1
	(d)(i)	2	1	
	(ii)	20202 ft	1 ft	ft 10101 × their k
2	10 (a)	Pentagon Octagon 20	1 1, 1	
	(b)(i)	35	1	
	(ii)	54	1	
	(c)(i)	p = 2, q = 3	3	M1 for substituting a value of <i>n</i> e.g. $\frac{1}{n}4(4-q) = 2 n \ge 3$
				p or M1 for number of diagonals from one vertex is $n-3$ (allow in words) and B1 for one correct value. If 0, SC1 for $\frac{n}{2}(n-3)$ seen.
	(ii)	4850 ft	_1ft	ft their (c)(i) allow only if ft calculates to a positive integer.
	(iii)	20 cao	2	SC1 for answer of 17 or M1 for their formula = 170
	(d)	31 cao	1	
3	10 (a)	Dots all correctly placed in Diagram 4	1	
	(b)	Column 4 16, 25, 16, 41 Column 5 25, 41, 20, 61 Column <i>n</i> : n^2 , $4n$, $n^2 + (n+1)^2$ oe	7	B2 or B1 for three correct B2 or B1 for three correct B1 B1 B1 oe likely to be $(n-1)^2 + n^2 + 4n$ or $2n^2 + 2n + 1$ After any correct answer for column <i>n</i> , apply isw
	(c)(i)	79 601 cao	1	
	(ii)	800 ft	1ft	ft their 4 <i>n</i> linear expression only
	(d)	12 cao		aths.com

					,
4	9	(a)	(i) 21 (ii) $P_6 = \frac{1}{2} \times 6 \times 7$ or better (= 21) (iii) 1275	1 1 1	Allow 3(6 + 1)
			(iv) 3825 (v) 11325	1 1ft 1	ft for $3 \times$ their (iii)
			(v) 11323 (vi) 7500	ı 1ft	ft their (\mathbf{v}) – their (\mathbf{iv}) provided > 0
		(b)	(i) 56	2	M1 for $1 \times 6 + 2 \times 5 + 3 \times 4 + 4 \times 3 + 5 \times 2 + 6 \times 1$
			(ii) $S_6 = \frac{1}{6} \times 6 \times 7 \times 8$ or better (= 56)	1	
			(iii) 1540	1	
		(c)	56 - 35 = 21	1	
		(d)	Correct algebraic proof with no errors	3	M1 for $\frac{1}{6}n(n+1)(n+2) - \frac{1}{6}(n-1)(n)(n+1)$ oe
			Silling		and M1 for $\frac{1}{6}n(n+1)(3)$ oe
5	10	(a)	21 and 34	1	
		(b)	-5 8	1+1	
		(c)	(i) 4, 6	3	M1 for $2 + d = e$ oe or $d + e = 10$ oe seen and either M1 for a correct eqn in d or e seen e.g. $2e = 12$ oe or $2d = 8$ oe
			(ii) $x = 28$	5	or B1 for either correct B4 for any two correct
			y = -5 z = 23		or M3 for any of $18 = 3x - 66$ oe or $3y + 33 = 18$ oe or $33 - 3z = -36$ oe
					or M1 for 2 of $y = x - 33$ oe or $y + z = 18$ oe or $x + y = z$ oe and M1 for combining two of the previous
					equations correctly isw (does not have to be simplified)
					after 0 scored
					SC1 for -33 + their x = their y or their x + their y = their z
					or their y + their $z = 18$
			www. Q8	M	aths.com

			l		
6	11	(a)		4	B3 for 2 correct rows
			42 56		or B2 for 1 correct row
			71 97		or B1 for any term in column 5 correct
		(h)	(1) 2550	1	
		(b)	(i) 2550 (ii) 30	1	
			(1) 50		
		(c)	(n+1)(n+2) oe final ans	1	
		(d)	(i) $2n^2 + pn + 1 = t$	2	
			Uses a value of <i>n</i> up to 6 and a		
			matching t from the table		
			e.g. puts $n = 3$ and $t = 31$		
			$2 \times 3^2 + 3p + 1 = 31$ M1	19.187	Correct solution shown with 1 intermediate step
					to $p = 4$ E1
			OR		
			Use $p = 4$ to get $2n^2 + 4n + 1 = 31$		
			and simplifies to 3 term eqn M1		Solve correctly to get $n = 3$ E1
			OR both		
			OR both $2 \times 9 + 4 \times 3 + 1 (= 31)$ M1		Conclusion e.g. $31 = 31$ E1
			with one part evaluated with $\frac{2 \times 9 + 4 \times 3 + 1}{1000}$		Conclusion c.g. 51 – 51 EI
			OR		
			n(n+1) + (n+1)(n+2) - 1	8	Correct simplification to $2n^2 + 4n + 1$ E1
			or better $M1$		
			(ii) 241	1	
			(iii) 12	3	M1 for $2n^2 + 4n + 1 = 337$
					and M1 for $(n-12)(n+14)$ or correct expression
					for <i>n</i> using formula
		(e)	L = A + D - 1 oe	1	
	107		(4 1) 8 27 64 125	2	D1 for 2 correct
7	10(a)	(A 1) 8 27 64 125 (B 4) 8 12 16 20	2	B1 for 3 correct
			$(C \ 4) \ 9 \ 16 \ 25 \ 36$	2	B1 for 3 correct
	(b)	512	1	
			169	1	
				A DUMPER	
	(c)	25	1	
			99	1	
		a)	145 $n^3 + 4n$ oe	1 1	
	(d)	145 $n^3 + 4n$ oe 16 $(n+1)^2 - 4n$ oe but isw	1, 1	Likely oe is $(n-1)^2$
			(n + 1) = 4n of but isw	1, 1	Likely us is $(n-1)$
				00-	C 11
			exterior Ch	X ///	aths.com
			wwwwwwwwww		
					1

— ——			1	1
8	9 (a)	 (i) 3, 8, 15 in correct positions (ii) 12 	2 3	B1 for 2 correct values in correct positions M2 for $12 \times (12 + 2)$ (= 168) or 12, (12 + 2) or M1 for $n^2 + 2n = 168$ then M1 for $(n + a)(n + b)$ where a and b are integers and $ab = -168$ or $a + b = 2$ oe
	(b)	(i) $2 + 3n$ oe (ii) 2^{n-1} oe	2 2	Allow unsimplified e.g. $5 + 3(n-1)$ B1 for $3n$ oe seen B1 for 2^k seen
	(c)	$a = \frac{1}{2}, b = 1\frac{1}{2}$ cao	6	B1 for 12 or 30 seen but if 30 clearly only from Diagram 4 then B0. M1 for any 1 of $a + b + 1 = 3$ oe 8a + 4b + 2 = 12 oe 27a + 9b + 3 = 30 oe M1 for a 2 nd of the above equations M1 (indep) for correctly eliminating <i>a</i> or <i>b</i> from pair of linear equations B1 for one correct value
9	11 (a)	(i) 10 (ii) $\frac{3 \times 4}{2}$ or $\frac{3 \times (3+1)}{2}$ (= 6) (iii) 7260 (iv) 12 840 (v) 160 400	1 1 1 2 2	M1 for $S_{200} - S_{120} (20100 - 7260)$ or $\frac{80}{2}(121 + 200)$ o.e. M1 for $2(1 + 2 + 3 + \dots + 400)$ o.e.
	(b)	(i) 36, 100 (ii) 11025 (iii) $\begin{bmatrix} n(n+1) \\ 2 \end{bmatrix}^2$ oe (iv) 3 348 900 (v) 32	1, 1 1 1 2	Ignore right-hand column isw M1 for square root then × 2 (1056) or SC1 for answer 33
10 1	12	(a) (i) 12,, 30 (ii) $(n+1)(n+2)$ oe (iii) $p = 2$ q = 2 (iv) 69(th), 70(th) (b) (i) $2 \times 3 + 7$ (ii) 27 (iii) 1707,, 13 653	2 1 1 2 1 1 1,1	B1 each isw if expand incorrectly M1 for their $2n + 2 = 140$ soi Accept $2 \times 3 + 2 \times 2 + 3$
		(iv) $69(th)$, $70(th)$ (b) (i) $2 \times 3 + 7$ (ii) 27	2 1 1	The second

116	(a)	(x =) 64 www 3	3	B2 for $x + 2x + x = 360 - 114 + 10$ or better or M1 for $x + 2x + 114 + x - 10 = 360$
	(b) (i)	-1 $n^{2} \text{ oe}$ $5n \text{ oe}$ $n^{2} + 5n \text{ oe}$	1 1 1 1	
	(ii)	20	2	M1 for their $n^2 + 5n = 500$ or 20 and 25 seen
	(c)	Final answer $\frac{x-4}{2x-1}$ cao www 4	4	B1 for $(x-4)(x+4)$ B2 for $(2x-1)(x+4)$ or SC1 for $(2x+a)(x+b)$ where either a+2b=7 or $ab=-4$
¹² 11 ((a)	33, 41 16π, 25π 20π,30π	1 1 2	B1 each
	(b) (i)	8n + 1 oe final answer	2	e.g. $9 + 8(n-1)$, condone $n = 8n + 1$ SC1 for $8n + k$
	(ii)	137 www2	2	M1 for their $(b)(i) = 1097$
	(c) (i)	$n^2\pi$ oe final answer	1	
	(ii)	$9n^2\pi$ oe final answer	1	Allow $(3n)^2 \pi$
	(d)	$n(n+1)\pi$ oe final answer	2	SC1 for a quadratic expression e.g. $n(n+1)$, $n^2 + 5$, $n^2 + n \pi$
13		(a) A 1, 13 - 2 n oe B 36, n^2 oe C 42, $n(n+1)$ oe D 729, 3^n oe E 687, $3^n - n(n+1)$ oe (b) (i) -187 (ii) 10 100 (c) 8 (d) 58 939	3 2 3 2 2ft 1ft 1 1 1	B1, B2 (M1 for $k - 2n$) oe B1, B1 B1, B2 (B1 for a quadratic in n) B1, B1 B1ft their $D - $ their C , B1ft their $D - $ their C only if both in terms of n ft if A is linear ft if C is quadratic

4 4					1
14	10 (a))	50, 70	1	
			10 <i>n</i> oe	1	
			51, 71	1	
			10n + 1 oe	1	
	(b) ((i)	212	1	
	(i	ii)	20 <i>n</i> + 12	1	
	(ii	ii)	20 <i>n</i> + 152	1	
	(c) ((i)	$5 \times 3^2 + 6 \times 3 = 63$	1	
			and $11 + 21 + 31 = 63$		
			or 32 + 31 = 63 or 11 + 52 = 63	1	
	(i	ii)	560	1	
	(0	d)	Complete solution with no errors seen and a conclusion	4	B1 for $5n^2 + 6n + 10n + 10 + 1$ or better
			e.g. $5n^2 + 6n + 10(n + 1) + 1$		B1 for use of $5(n + 1)^2 = 5n^2 + 10n + 5$ oe at any stage
			$= 5n^{2} + 6n + 10n + 10 + 1$ $= 5n^{2} + 10n + 5 + 6n + 6$		B1 for use of $6n + 6 = 6(n + 1)$ oe at any stage
			$= 5n^2 + 10n + 5 + 6n + 6$		TERRITES
	10 ($= 5(n+1)^2 + 6(n+1)$	2	
15	10 (a)	(i) $4.5 \text{ or } 4\frac{1}{2}$	3	M2 for a complete correct method or M1 for one correct step at any stage.
			(ii) $(x-6)(x-1)$	M2	M1 for $(x + a)(x + b)$ where $ab = 6$ or $a + b = -7$
			1,6	A1FT	FT their brackets dep on M1 earned After M0 scored SC1 for 1, 6 as answer
			(iii) 6 <i>www.08</i>	4	B1 for $2(3x - 2) + x + 2 = 4 \times 10$ oe and B1 for correct multiplication of a bracket and M1 for correct rearrangement of their linear equation without brackets to $ax = b + c + d$ or better
	(b)	a = 1/3 oe, $b = 1/2$ oe	6	B1 for any one of 1 = a + b + 1/6 oe 5 = 8a + 4b + 2/6 oe 14 = 27a + 9b + 3/6 oe 30 = 64a + 16b + 4/6 oe Or any other correct equation and B1 for another of the above equations and M1 for equating one coefficient or correct rearrangement to give <i>a</i> or <i>b</i> as subject and M1 for subtracting to eliminate <i>a</i> or <i>b</i> or correct substitution for <i>their a</i> or their <i>b</i> A1 for <i>a</i> = 1/3 oe or <i>b</i> = 1/2 oe

16	10 (a)	(i) $1+2+3+4+5=15$	1	
	(<i>a</i>)		I	
		(ii) Correct substitution equating to	2	M1 for using a value of <i>n</i> in $\frac{n(n+1)}{k}$
		sum e.g. $\frac{2(2+1)}{k} = 3$ and $k = 2$ stated		e.g. $\frac{2(2+1)}{k} = 3$
		e.g. $= 3$ and $k - 2$ stated k with no errors seen		h.
		with no errors seen		or for a verification using $k = 2$ e.g. $\frac{2(2+1)}{2} = 3$
				2
		(iii) 1830	1	
		(iv) 30	2	M1 for $\frac{n(n+1)}{2} = 465$ or better
		(v) $n-8$	1	
	(b)	(i) 225, 15	2	B1 either
		$n^2(n+1)^2$		
		(ii) $\frac{n^2(n+1)^2}{4}$ oe	1	
				M1 for $\frac{19^2(19+1)^2}{4}$ oe or 190^2
		(iii) 36100	2	$\frac{1}{4} \text{ oe or } 190^{2}$
17		48 and 57, $9n+3$ oe	1 2	B1 for $9n + k$ oe
	(b)	56 and 50, $86 - 6n$ oe	1 2	B1 for $k - 6n$ oe
	(c)	125 and 216, n^3 oe	1 1	
	(d)	130 and 222 $n^3 + n$ oe	1 1FT	FT <i>their</i> (c) + n dep on expression in n in (c)
18		15 19 2n + 2 nn 2(n + 1)		B2 for 15 (25
	9 (a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	B2 for 15, 6, 25 or B1 for two correct values
		25 36 $(n+1)^2$		B3 for 18, 10, 36
				or B1 for each correct value
				B2 for $3n + 3$ oe
				or M1 for $3n + k$, for any k
		www.08	M	B2 for $(n+1)^2$ oe or M1 for a quadratic expression
	(b)	14	2	M1 for $(n+1)(n+2) = 240$ or better
				or $15 \times 16 = 240$
	(c) (i)	$\frac{1}{2} + p + q = 9$	1	
	(ii)	[p =] 3	5	B2 for $4p + 2q = 23$ or B1 for $1/(x + 2a + p + 2a + q + 2a)$
		$[q=] \frac{11}{2}$		or B1 for $\frac{1}{2} \times 2_3 + p \times 2_2 + q \times 2$ oe M1 for correct multiplication and subtraction of <i>their</i> equations
				A1 for $[p =] 3$ or $[q =] \frac{11}{2}$
				If 0 scored then SC1 for either correct

19	11	(a)	$\frac{1}{8} \frac{1}{16} \frac{1}{32}$	2	B1 for 2 correct
			$\frac{1}{2^{n-1}}$ oe	2	SC1 for $\frac{1}{2^n}$ oe
			$2^{-3} 2^{-4} 2^{-5}$	1	
			2^{1-n} or $2^{-(n-1)}$	1	
	(b)) (i)	64 256 1024	1	
			2 ⁶ 2 ⁸ 2 ¹⁰	1	
		(ii)	$2^{2(n-1)}$ or 2^{2n-2}	1	
	(c)		16384	2	B1 for <i>n</i> = 8
20	9	(a)	36, 9, 45	2	B1 for two correct values
			8 <i>n</i> + 4 oe	2	M1 for $8n + k$, for any k
			$(n-1)^2$ oe	2	M1 for a quadratic expression of form $n_2 [+an + b]$ oe
		(b)	19	2	M1 for $(n + 1)(n + 5) = 480$ or better or 20×24 seen
		(c)	(i) $\frac{1}{3} + p + q = 12$ and no errors seen	1	Accept $p + q = 12 - \frac{1}{3}$ after $\frac{1}{3} [1^3] + p[1^2] + q[1]$ shown
			(ii) $\frac{1}{3} \times 8 + 4p + 2q = 12 + 21$	2	M1 for 12 + 21 seen or 33 seen
			(iii) $[p=] \frac{7}{2}$ oe $[q=] \frac{49}{6}$ oe	3	M1 for correct multiplication and subtraction or substitution using the correct given equations B1 for $[p =] \frac{7}{2}$ or $[q =] \frac{49}{6}$
			6		
					After 0 scored, SC1 for 2 values satisfying one of the original correct given equations
21	9	(a)	28 45 17 21 45 66	1, 1 1 1	aths.com
		(b)	(i) $4n-3$ oe	2	M1 for $4n + k$
			(ii) 237	1	
			iii) 50	2FT	FT <i>their</i> (b)(i) = 200 solved and then answer truncated dep on linear expression of form $an + k$ M1 for <i>their</i> $4n - 3 = 200$ or <i>their</i> $4n - 3 \le 200$

(0) $p = 2$ and $q = -5$ with some correct supporting working leading to the solutions	5	M2 for any 2 of $p + q + 3 = 0$ oe, $2^2 p + 2q + 3 = 1$ oe, $3^2 p + 3q + 3 = 6$ oe, $4^2 p + 4q + 3 = 15$ oe, $5^2 p + 5q + 3 = their$ 28 oe, etc. or M1 for any one of these M1 indep for correctly eliminating p or q from pair of linear equations A1 for one correct value If 0 scored SC1 for 2 values that satisfy one of their original equations After M0, 2 correct answers SC1
(d	1) $2n^2 - n \text{ or } n(2n-1)$	2	B1 for answer $2n^2 + k[n]$ or M1 for <i>their quadratic</i> from (c) + <i>their linear</i> from (b)(i)
22 11 (a (b	$n + 2$ $7 n + 2 \text{ oe}$ $3 n - 2 \text{ oe}$ $21 n^2 - 4 \text{ oe}$ 72	8	B1 each M1 for $\frac{72}{74}$ or their $\frac{n}{n+2} = \frac{36}{37}$ M1 for their $(n^2 - 4) = 725$ or 25×29 [= 725]

			Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г Г		
23	9	(a)	(i) 16	1	
			(ii) n^2	1	
		(b)	(i) 43	1	
			(ii) 7	1	
		()	5 , 5	(
		(c)	2 0	6	M1 for any correct substitution eg $\frac{2}{3}(2)^3 + 2^2a + 2b$
			supporting working		$\frac{1}{3} \frac{2}{3} \frac{1}{2} \frac{1}$
					A1 for one of
					$eg \frac{2}{3} + a + b = 4$ or better
					eg $\frac{16}{3} + 4a + 2b = 17$ or better
			911111139		eg $\frac{54}{3}$ + 9a + 3b = 43 or better
					$\frac{1}{3}$
					A1 for another of
					$eg \frac{2}{3} + a + b = 4$ or better
					eg $\frac{16}{3} + 4a + 2b = 17$ or better
					$eg \frac{54}{3} + 9a + 3b = 43$ or better
					3
					M1 for correctly eliminating one variable from two of <i>their</i> equations in <i>a</i> and <i>b</i>
					A1 for $a = \frac{5}{2}$ oe
					2
					A1 for $b = \frac{5}{6}$ oe
					After zero scored, SC2 for 2 correct
					answers without supporting working or SC1 for 2 of 17, 43, 86, 150, 239 seen
24	10		A -13, -20	1	
			-7n + 22 oe	2	SC1 for $-7n + k$ or $kn + 22$ oe
			B $\frac{9}{22}, \frac{10}{23}$	1	atter care
			n+4 oe	2	B1 for $n + 4$ oe or $n + 17$ oe seen, but not in
			n+17 °°		wrong position
			C 26, 37	1	
			$n^2 + 1$ oe	1	
			D 162, 486	1	
			$2 \times 3^{n-1}$ oe	2	SC1 for $k \times 3^{n+p}$ [k, p integers]
					Accept $2 \times \frac{3^n}{3}$
					3

25	11 (a)			
			1	
	(b)	30	1	
		10	1	
	(c)	n(n+1) oe	2	B1 for $an^2 + bn + c$ a, b, c numeric $a \neq 0$
	(d)	$\frac{1}{2}n(n-1)$ oe	2	B1 for using $\frac{1}{2}$ or in expression of form
		Call International States		$\frac{1}{2}(an^2 + bn + c) a \neq 0 \text{or} kn(n-1) k \neq 0$
26	10 (a)	10 15		
		15 21		
		35 48	6	B1 for each correct entry
	(b)	(i) 3	2	M1 for any correct substitution in $n^2 + 4n + p$ = number of tiles eg $2^2 + 4(2) + p = 15$
		(ii) 143	1FT	FT 140 + <i>their</i> (b)(i)
	(c)	$a = \frac{1}{2}$ or $b = \frac{3}{2}$ or nfww	5	B1 for a correct simplified equation e.g. $a + b + 1 = 3$, $4a + 2b + 1 = 6$, 9a + 3b + 1 = 10 etc B1 for a 2 nd correct simplified equation M1 for correctly eliminating one variable for <i>their</i> equations in <i>a</i> and <i>b</i>
				A1 for $a = \frac{1}{2}$ nfww
				A1 for $b = \frac{3}{2}$ nfww
27	9(a)(i) 9(a)(ii)	5 and 13 8n - 3 = 203	1 M1	Evaluation of 25th or 26th term with supporting evidence or explanation
		25.75 or $25\frac{3}{4}$ www.28	Al	Second evaluation of 25th or 26th terms with supporting evidence or explanation
				If zero scored, SC1 for 25.75 or 197 and 205 with partial evidence or explanation
	9(b)(i)	6n + 7 oe final answer	2	B1 for $6n + c$ or $kn + 7$ $k \neq 0$
	9(b)(ii)	$n^2 + n + 2$ oe final answer	2	B1 for a quadratic expression or second difference = 2
	9(c)	[y =] 10	2	M1 for $5(20 - y) = 50$
		[First term =] 14	2	M1 for $5(x - their y) = 20$ or for $20 \div 5 + their y$

	()	10 22 4 1 2	(P2 6 10 22 17 26
28	6(a)	18 22 $4n + 2$ oe 17 26 $n^2 + 1$ oe	6	B2 for 18, 22, 17, 26 or B1 for two or three correct values AND B2 for $4n + 2$ oe or B1 for $4n + k$ oe or $pn + 2$ ($p \neq 0$) AND B2 for $n^2 + 1$ oe or B1 for $n^2 + k$ oe
	6(b)	242	1	FT <i>their</i> $4n + 2$ provided a linear expression
	6(c)	15	1	
	6(d)	3	2	M1 for $2 \times 1^2 + 2 \times 1 + q = 7$ oe
29	12(a)	18 28	2	B1 for each
	12(b)	3 <i>n</i> + 3 oe	2	B1 for $3n + k$ oe or $cn + 3$ oe $c \neq 0$
	12(c)	45	2	M1 for identifying 7th pattern or M1 for <i>their</i> $(3n+3) = 24$
	12(d)	$[a=]\frac{3}{2}$ oe $[b=]\frac{13}{3}$ oe	6	M1 for any correct substitution
				e.g. $\frac{1}{6}(2)^3 + 2^2a + 2b$
				A1 for one of e.g.
				$\frac{1}{6} + a + b = 6 \text{ oe}$
				$\frac{8}{6} + 4a + 2b = 16$ oe
				$\frac{27}{6} + 9a + 3b = 31$ oe
				$\frac{6}{64} + 16a + 4b = 52 \text{ oe}$
				A1 for another of the above M1 for correctly eliminating one
				variable from <i>their</i> equations A1 for $a = \frac{3}{2}$
		uuu. Q8	M	All for $b = \frac{1}{3}$ oe
			["(
		1		

30	11(a)	40 54	4	B1 for each
	X-7	26 34	-	
	11(b)	$n^2 + 3n$ or $n(n+3)$ oe	2	B1 for a quadratic expression or for 2nd common difference 2 (at least 2 shown) or for 2 correct equations seen
				or for subtracting n^2
	11(c)	100	2	M1 for <i>their</i> (b) = 10300 seen
	11(d)	$[a =] \frac{1}{2} \text{ oe}$ and $[a =] \frac{5}{2}$	2	B1 for each or M1 for one correct equation or for 2nd difference = 1 soi (at least 2 shown)
		$[b=]\frac{5}{2}$ oe		
31	7(a)	25 36 10 15 35 51	2	B1 for 3, 4 or 5 correct
	7(b)	n^2	1	
	7(c)(i)	92	1	
	7(c)(ii)	$\frac{1}{2}(n^2-n)$ oe	2	M1 for $\frac{1}{2}(3n^2 - n) - n^2$ oe
	7(d)	$a = \frac{1}{2}, b = \frac{1}{2}$	5	or for final quadratic answer with $\frac{1}{2}n^2$ oe or $-\frac{1}{2}n^2$ oe but not both B2 for 2 correct equations eg a+b=1, $8a+4b=6or B1 for 1 correct equation$
		uuu.Q8	M	B2 for one correct value or M1 (dep on at least B1) for correctly eliminating one variable from two linear equations in a and b OR B2 for $a = \frac{1}{2}$ or B1 for 6a = 3 or for 3 rd difference = 3 B2 for $b = \frac{1}{2}$ or M1 for substituting <i>their</i> a into a correct equation of first differences

	1	1		1
32	11(a)	A: -3 17 – 4 <i>n</i> oe	3	B1 for -3 B2 for $17 - 4n$ oe or B1 for $k - 4n$ oe or $17 - pn$ oe, $p \neq 0$
		B: 124 $n^3 - 1$ oe	3	B1 for 124 B2 for $n^3 - 1$ oe or B1 for any cubic
		C: $\frac{11}{128}$ $\frac{n+6}{2^{n+2}}$ oe	4	B1 for $\frac{11}{128}$ B3 for $\frac{n+6}{2^{n+2}}$ oe or B2 for 2^{n+2} oe seen
				or B1 for 2^k oe or $n + 6$ seen
	11(b)	p+1 2q oe	2	B1 for $p + 1$ or $2q$ oe
				160010391
33				
	11A	24	B 1	
		5 <i>n</i> – 1 oe	B2	B1 for $5n - k$ or $jn - 1$ or $j \neq 0$
	11B	127	B1	
		$n^3 + 2$ oe	B2	B1 for n^3 oe
	11C	256	B1	1 H
		$4^{(n-1)}$ oe $1000000000000000000000000000000000000$	B2	B1 for 4^k oe