Vectors

www.Q8Maths.com

1) June 2010 V1

- 19 The position vector **r** is given by $\mathbf{r} = 2\mathbf{p} + t(\mathbf{p} + \mathbf{q})$.
 - (a) Complete the table below for the given values of *t*.Write each vector in its simplest form.One result has been done for you.

t	0		2	3
r		1000	4 p + 2 q	

[3]

- (b) *O* is the origin and **p** and **q** are shown on the diagram.
 - (i) Plot the 4 points given by the position vectors in the table.

[2]

- (ii) What can you say about these four points?
 - Answer(b)(ii) [1]

2) June 2010 V3

Answer(a) \overrightarrow{HG} = [1]

(b) \overline{ON}

Answer(b) $\vec{ON} =$ [2]

www.Q8Maths.com

3) November 2010 V2

 $\overrightarrow{AB} = \mathbf{a} + t\mathbf{b}$ and $\overrightarrow{CD} = \mathbf{a} + (3t - 5)\mathbf{b}$ where t is a number. 7

Find the value of t when $\overrightarrow{AB} = \overrightarrow{CD}$

[3]

5) June 2011 V2

С

Р

В

ิล

 $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$. Find in terms of \mathbf{a} and \mathbf{c} , in their simplest form,

(a) \overrightarrow{PQ} ,

Answer(a) \overline{PQ} = [2]

NOT TO SCALE

(b) the position vector of M, where M is the midpoint of PQ

0

Answer(b) [2]

www.Q8Maths.com

6) November 2011 V1
13 $A \xrightarrow{C} B \xrightarrow{D} D$ $A \xrightarrow{D} D$ A and B have position vectors a and b relative to the origin O.
C is the midpoint of AB and B is the midpoint of AD . Find in terms of a and b in their simplest form
(a) the position vector of C,
(b) the vector \vec{CD} . [2]
<i>Answer(b)</i> [2]
www.LO'Maths.com
$\Omega = 0.00$ $\Omega = 0.00$ $\Omega = 0.00$

www.Q8M aths.com

8) November 2011 V2	
17 $ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & &$	
(a) Find, in terms of a and c, in their simplest form	
(i) the vector \overrightarrow{AB} ,	
Answer(a)(i) $\overrightarrow{AB} =$	[2]
(ii) the position vector of <i>M</i> .	
(b) Mark the point D on the diagram where $\overrightarrow{OD} = 3\mathbf{a} + \mathbf{c}$.	[2] [2]
www.Q8Maths.com	

9) June 2012 V1

19

O is the origin and OPQRST is a regular hexagon.

$$\overrightarrow{OP} = \mathbf{p}$$
 and $\overrightarrow{OT} = \mathbf{t}$

Find, in terms of **p** and **t**, in their simplest forms,

(a) \overrightarrow{PT} ,

Answer(a) $\overrightarrow{PT} =$ [1]

(b) \overrightarrow{PR} ,

Answer(b) $\overrightarrow{PR} =$ [2]

(c) the position vector of R. Q

Answer(c) [2]

R Q М NOT TO X SCALE 0 P р O is the origin and OPRQ is a parallelogram. The position vectors of \tilde{P} and \tilde{Q} are **p** and **q**. X is on PR so that PX = 2XR. Find, in terms of **p** and **q**, in their simplest forms (a) \vec{QX} , Answer(a) $\vec{QX} =$ [2] (b) the position vector of *M*, the midpoint of *QX*. www.Q8Maths.com Answer(b) [2]

NOT TO SCALE

D

Ε

C

In the diagram, *O* is the origin. $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{OD} = \mathbf{d}$. *E* is on *CD* so that *CE* = 2*ED*.

0

Find, in terms of **c** and **d**, in their simplest forms,

d

Ċ

(a) \overrightarrow{DE} ,

Answer(a) $\overrightarrow{DE} =$ [2]

(b) the position vector of E.

Answer(b) [2]

www.Q8Maths.com

19	C
<i>OABCDE</i> is a regular polygon.(a) Write down the geometrical name for the second se	or this polygon. Answer(a)
(b) O is the origin. $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$.	
Find, in terms of b and c , in their si	mplest form,
(i) \overrightarrow{BC} , (ii) \overrightarrow{OA} ,	Answer(b)(i) $\vec{BC} = \dots$ [1 8 Maths.com
	Answer(b)(ii) $\overrightarrow{OA} =$
(iii) the position vector of E .	

www.Q8M aths.com

15) November 2013 V2

С

ABCDEF is a regular hexagon and O is the midpoint of AD.

$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OC} = \mathbf{c}$

Find, in terms of a and c, in their simplest form

(a) \overrightarrow{BE} ,

(**b**) \overrightarrow{DB} ,

Answer(b) $\overrightarrow{DB} = \dots$ [2]

(c) the position vector of E

www.Q8M aths.com

www.Q8Maths.com

18) November 2014 V3 14 Р Q A **.** B NOT TO SCALE b 0 The diagram shows two points, P and Q, on a straight line ABP is the midpoint of AB and Q is the midpoint of PB. *O* is the origin, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. Write down, in terms of **a** and **b**, in its simplest form (a) \overrightarrow{AP} , (b) the position vector of Q[2] *Answer*(*b*) www.Q8Maths.com

19) June 2015 V1	
14 $P_{QRS} = a \ QRS = b \ ad \ \overline{SQ} = a - 2b.$ (a) Show that $\overline{PS} = 2b.$ Answer(a)	
(b) Write down the mathematical name for the quadrilateral <i>PQRM</i> , giving reasons for your answer. Answer(b) because	[1] [2]
www.Q8M aths.com	20

In the diagram, *O* is the origin, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. *C* is on the line *AB* so that *AC*: *CB* = 1:2.

b

0

a

Find, in terms of **a** and **b**, in its simplest form,

В

(a) \overrightarrow{AC} ,

NOT TO SCALE

A

(b) the position vector of C.

www.Q8Maths.com

A b В NOT TO SCALE 0 ć C In the diagram, O is the origin, $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{AB} = \mathbf{b}$. *P* is on the line *AB* so that AP : PB = 2 : 1. Q is the midpoint of BC. Find, in terms of **a**, **b** and **c**, in its simplest form (a) \overrightarrow{CB} , $\overrightarrow{CB} = \dots$... [1] (b) the position vector of Q,[2] (c) \overrightarrow{PQ} . www.Q8Maths.com

 \overrightarrow{PQ} =[2]

GHJK is a quadrilateral. $\overline{GH} = \mathbf{a}, \overline{JH} = \mathbf{b} \text{ and } \overline{KJ} = \mathbf{c}.$ L lies on GK so that LK = 3GL.

Find an expression, in terms of **a**, **b** and **c**, for \overrightarrow{GL} .

www.Q8Maths.com

26) November 2017 V3

14 (a) *D* is the point (2, -5) and $\overrightarrow{DE} = \begin{pmatrix} 7 \\ 1 \end{pmatrix}$.

Find the co-ordinates of the point *E*.

(b) $\mathbf{v} = \begin{pmatrix} t \\ 12 \end{pmatrix}$ and $|\mathbf{v}| = 13$.

Work out the value of *t*, where *t* is negative.

www.Q8Maths.com

(.....) [1]

.....[2]

t =

27) June 2018 V2

22

In the diagram, O is the origin, $\overrightarrow{OC} = -2\mathbf{a} + 3\mathbf{b}$ and $\overrightarrow{OD} = 4\mathbf{a} + \mathbf{b}$.

(a) Find \overrightarrow{CD} , in terms of a and b, in its simplest form.

 \overrightarrow{CD} =[2]

(b) $\overrightarrow{DE} = \mathbf{a} - 2\mathbf{b}$

Find the position vector of E, in terms of **a** and **b**, in its simplest form.

www.Q8Maths.com