A / A* questions 2010

www.Q8maths.com

$0580 / 21$

umu: D8 Medaticam

1 Write the numbers in order of size with the smallest first.

$$
\begin{array}{llll}
\sqrt{10} & 3.14 & \frac{22}{7} & \pi
\end{array}
$$

```
Answer ............. < .............. < ............. < .............. [2]
```

2 Michel changed $\$ 600$ into pounds ($£$) when the exchange rate was $£ 1=\$ 2.40$.
He later changed all the pounds back into dollars when the exchange rate was $£ 1=\$ 2.60$.
How many dollars did he receive?

Answer \$

$3 \quad p$ is the largest prime number between 50 and 100.
q is the smallest prime number between 50 and 100.
Calculate the value of $p-q$.

> Answer

4 A person in a car, travelling at 108 kilometres per hour, takes 1 second to go past a building on the side of the road.

Calculate the length of the building in metres.

8 (a) Shade one square in each diagram so that there is
(i) one line of symmetry,

(ii) rotational symmetry of order 2 .

(b) The pyramid below has a rectangular base.

The vertex of the pyramid is vertically above the centre of the base.
Write down the number of planes of symmetry for the pyramid.

Answer(b)

Write down the letters of all the triangles which are
(a) congruent to the shaded triangle,

Answer(a)
(b) similar, but not congruent, to the shaded triangle.

$0580 / 41$

umu: 28 Mhaticame

A

B

Box A contains 3 black balls and 1 white ball.
Box B contains 3 black balls and 2 white balls.
(a) A ball can be chosen at random from either box.

Complete the following statement.
There is a greater probability of choosing a white ball from Box \qquad ..

Explain your answer.

Answer(a)
(b) Abdul chooses a box and then chooses a ball from this box at random.

The probability that he chooses box A is $\frac{2}{3}$.
(i) Complete the tree diagram by writing the four probabilities in the empty spaces.

(ii) Find the probability that Abdul chooses box A and a black ball.
Answer(b)(ii)
(iii) Find the probability that Abdul chooses a black ball.

> Answer(b)(iii)
(c) Tatiana chooses a box and then chooses two balls from this box at random (without replacement).

The probability that she chooses box A is $\frac{2}{3}$.
Find the probability that Tatiana chooses two white balls.

7 (a) Calculate the volume of a cylinder of radius 31 centimetres and length 15 metres. Give your answer in cubic metres.

Answer(a) \qquad m^{3}
(b) A tree trunk has a circular cross-section of radius 31 cm and length 15 m .

One cubic metre of the wood has a mass of 800 kg .
Calculate the mass of the tree trunk, giving your answer in tonnes.
(c)

The diagram shows a pile of 10 tree trunks.
Each tree trunk has a circular cross-section of radius 31 cm and length 15 m .
A plastic sheet is wrapped around the pile.
C is the centre of one of the circles.
$C E$ and $C D$ are perpendicular to the straight edges, as shown.
(i) Show that angle $E C D=120^{\circ}$. Answer(c)(i)
(ii) Calculate the length of the arc $D E$, giving your answer in metres.

> Answer(c)(ii) m
(iii) The edge of the plastic sheet forms the perimeter of the cross-section of the pile. The perimeter consists of three straight lines and three arcs. Calculate this perimeter, giving your answer in metres.

Answer(c)(iii)
m
[3]
(iv) The plastic sheet does not cover the two ends of the pile.

Calculate the area of the plastic sheet.

Answer(c)(iv)
m^{2} [1]

10 A company has a vehicle parking area of $1200 \mathrm{~m}^{2}$ with space for x cars and y trucks.
Each car requires $20 \mathrm{~m}^{2}$ of space and each truck requires $100 \mathrm{~m}^{2}$ of space.
(a) Show that $x+5 y \leqslant 60$.

Answer(a)
(b) There must also be space for
(i) at least 40 vehicles,
(ii) at least 2 trucks.

Write down two more inequalities to show this information.
Answer(b)(i)

Answer(b)(ii)
(c) One line has been drawn for you.

On the grid, show the three inequalities by drawing the other two lines and shading the unwanted regions.

$$
\text { Answer(e) Number of cars }=
$$

Number of trucks $=$
\qquad
\qquad

Greatest possible income $=\$$
(d) Use your graph to find the largest possible number of trucks.
Answer(d)
(e) The company charges $\$ 5$ for parking each car and $\$ 10$ for parking each truck. Find the number of cars and the number of trucks which give the company the greatest possible income.

Calculate this income.

Diagram 1
1 white dot
5 black dots
6 lines

Diagram 2
4 white dots
7 black dots
14 lines

Diagram 3
9 white dots
9 black dots
26 lines

Diagram 4
16 white dots
11 black dots 42 lines

The four diagrams above are the first four of a pattern.
(a) Diagram 5 has been started below.

Complete this diagram and write down the information about the numbers of dots and lines.

\qquad white dots
\qquad black dots
\qquad lines
(b) Complete the information about the number of dots and lines in Diagram 8.

Answer(b)
	white dots
$~$
black dots	

(c) Complete the information about the number of dots in Diagram n.

Give your answers in terms of n.

$$
\begin{gathered}
\text { Answer(c) } \text { white dots } \\
\\
\\
. ~ b l a c k ~ d o t s ~
\end{gathered}
$$

(d) The number of lines in diagram n is $k\left(n^{2}+n+1\right)$.

Find
(i) the value of k,

$$
\text { Answer(d)(i) } k=
$$

(ii) the number of lines in Diagram 100 .

$0580 / 22$

mur. 28 Naths.come

The diagram shows accurate graphs of $y=\sin x$ and $y=\cos x$ for $0^{\circ} \leqslant x \leqslant 180^{\circ}$.

Use the graph to solve the equations
(a) $\sin x-\cos x=0$,

$$
\text { Answer(a) } x=
$$

(b) $\sin x-\cos x=0.5$.

$$
\text { Answer(b) } x=
$$

9 A fence is made from 32 identical pieces of wood, each of length 2 metres correct to the nearest centimetre.

Calculate the lower bound for the total length of the wood used to make this fence.
Write down your full calculator display.

10 Make x the subject of the formula.

$$
P=\frac{x+3}{x}
$$

11

Two circles, centres O and C, of radius 6 cm and 4 cm respectively, touch at Q. $P T$ is a tangent to both circles.
(a) Write down the distance $O C$.

$$
\text { Answer(a) } O C=\quad . ~ c m ~[1] ~
$$

(b) Calculate the distance $P T$.

(a) The line $y=4$ meets the line $2 x+y=8$ at the point A.

Find the co-ordinates of A.

Answer(a) A (........ ,) [1]
(b) The line $3 x+y=18$ meets the x axis at the point B.

Find the co-ordinates of B.

Answer(b) B (........ ,) [1]
(c) (i) Find the co-ordinates of the mid-point M of the line joining A to B.
Answer(c)(i) M (........ ,)
(ii) Find the equation of the line through M parallel to $3 x+y=18$.

Answer(c)(ii)

The diagram shows the junction of four paths.
In the junction there is a circular area covered in grass.
This circle has centre O and radius 8 m .
(a) Calculate the area of grass.

> Answer(a)
\qquad m^{2}
(b)

NOT TO
SCALE

The arc $P Q$ and the other three identical arcs, $R S, T U$ and $V W$ are each part of a circle, centre O, radius 12 m .
The angle $P O Q$ is 45°.
The arcs $P Q, R S, T U, V W$ and the circumference of the circle in part(a) are painted white.
Calculate the total length painted white.

19 The braking distance, d metres, for Alex's car travelling at $v \mathrm{~km} / \mathrm{h}$ is given by the formula

$$
200 d=v(v+40)
$$

(a) Calculate the missing values in the table.

v $(\mathrm{~km} / \mathrm{h})$	0	20	40	60	80	100	120
d (metres)	0		16		48		96

(b) On the grid below, draw the graph of $200 d=v(v+40)$ for $0 \leqslant v \leqslant 120$.

(c) Find the braking distance when the car is travelling at $110 \mathrm{~km} / \mathrm{h}$.
Answer(c)
m
[1]
(d) Find the speed of the car when the braking distance is 80 m .

$$
\text { Answer(d) ... } \mathrm{km} / \mathrm{h}
$$

[^0]
$0580 / 42$

YEAR

mur. 28 Naths come

2 (a) $\mathbf{p}=\binom{3}{2}$ and $\mathbf{q}=\binom{6}{3}$.
(i) Find, as a single column vector, $\mathbf{p}+2 \mathbf{q}$.

Answer(a)(i)
(ii) Calculate the value of $|\mathbf{p}+2 \mathbf{q}|$.

Answer(a)(ii)
(b)

In the diagram, $C M=M V$ and $O L=2 L V$.
O is the origin. $\overrightarrow{O C}=\mathbf{c}$ and $\overrightarrow{O V}=\mathbf{v}$.
Find, in terms of \mathbf{c} and \mathbf{v}, in their simplest forms
(i) $\overrightarrow{C M}$,
(ii) the position vector of M,
Answer(b)(ii)
(iii) $\overrightarrow{M L}$.

The diagram shows a spinner with six numbered sections.
Some of the sections are shaded.
Each time the spinner is spun it stops on one of the six sections.
It is equally likely that it stops on any one of the sections.
(a) The spinner is spun once.

Find the probability that it stops on
(i) a shaded section,
Answer(a)(i)
(ii) a section numbered 1 ,
Answer(a)(ii)
(iii) a shaded section numbered 1 ,
Answer(a)(iii)
(iv) a shaded section or a section numbered 1 .
Answer(a)(iv)
(b) The spinner is now spun twice.

Find the probability that the total of the two numbers is
(i) 20 ,

> Answer(b)(i)
(ii) 11 .

Answer(b)(ii)
(c) (i) The spinner stops on a shaded section.

Find the probability that this section is numbered 2.

> Answer(c)(i)
(ii) The spinner stops on a section numbered 2 .

Find the probability that this section is shaded.

> Answer(c)(ii)
(d) The spinner is now spun until it stops on a section numbered 2.

The probability that this happens on the nth spin is $\frac{16}{243}$.

Find the value of n.

$$
\text { Answer(d) } n=
$$

NOT TO
SCALE

The diagram shows some straight line distances between Auckland (A), Hamilton (H), Tauranga (T) and Rotorua (R).
$A T=180 \mathrm{~km}, A H=115 \mathrm{~km}$ and $H T=90 \mathrm{~km}$.
(a) Calculate angle $H A T$.

Show that this rounds to 25.0°, correct to 3 significant figures.
Answer(a)
(b) The bearing of H from A is 150°.

Find the bearing of
(i) T from A,

Answer(b)(i)
(ii) A from T.
(c) Calculate how far T is east of A.

Answer(c)

km
(d) Angle $T H R=30^{\circ}$ and angle $H R T=70^{\circ}$.

Calculate the distance $T R$.

Answer(d)
km
(e) On a map the distance representing $H T$ is 4.5 cm .

The scale of the map is $1: n$.
Calculate the value of n.

Answer(e) $n=$

6 A spherical ball has a radius of 2.4 cm .
(a) Show that the volume of the ball is $57.9 \mathrm{~cm}^{3}$, correct to 3 significant figures.
[The volume V of a sphere of radius r is $V=\frac{4}{3} \pi r^{3}$.]

Answer(a)
(b)

NOT TO SCALE

Six spherical balls of radius 2.4 cm fit exactly into a closed box. The box is a cuboid.

Find
(i) the length, width and height of the box,

> Answer(b)(i)
\qquad cm, \qquad cm, \qquad cm
(ii) the volume of the box,
Answer(b)(ii)
\qquad cm^{3}
(iii) the volume of the box not occupied by the balls,
Answer(b)(iii)

$$
\mathrm{cm}^{3}
$$

(iv) the surface area of the box.
\qquad cm^{2}
(c)

NOT TO
SCALE

The six balls can also fit exactly into a closed cylindrical container, as shown in the diagram.
Find
(i) the volume of the cylindrical container,

$$
\begin{equation*}
\text { Answer(c)(i) .. } \mathrm{cm}^{3} \tag{3}
\end{equation*}
$$

(ii) the volume of the cylindrical container not occupied by the balls,

$$
\text { Answer(c)(ii) } \mathrm{cm}^{3} \quad[1]
$$

(iii) the surface area of the cylindrical container.

> Answer(c)(iii)
cm^{2}
$9 \quad$ (a)

The lines $A B$ and $C D E$ are parallel.
$A D$ and $C B$ intersect at X.
$A B=9 \mathrm{~cm}, C D=6 \mathrm{~cm}$ and $D X=3 \mathrm{~cm}$.
(i) Complete the following statement.

Triangle $A B X$ is \qquad to triangle $D C X$.
(ii) Calculate the length of $A X$.

$$
\text { Answer(a)(ii) } A X=
$$

(iii) The area of triangle $D C X$ is $6 \mathrm{~cm}^{2}$.

Calculate the area of triangle $A B X$.

Answer(a)(iii) \qquad cm^{2}
(iv) Angle $B A X=x^{\circ}$ and angle $A B X=y^{\circ}$.

Find angle $A X B$ and angle $X D E$ in terms of x and/or y.

$$
\begin{align*}
\text { Answer(a)(iv) Angle } A X B & =\text {........................ } \\
\text { Angle } X D E & =\text {......................... }
\end{align*}
$$

The diagrams show some polygons and their diagonals.
(a) Complete the table.

Number of sides	Name of polygon	Total number of diagonals
3	triangle	0
4	quadrilateral	2
5	hexagon	5
6	heptagon	9
7		14
8		

(b) Write down the total number of diagonals in
(i) a decagon (a 10-sided polygon),

> Answer(b)(i)
(ii) a 12 -sided polygon.
Answer(b)(ii)
(c) A polygon with n sides has a total of $\frac{1}{p} n(n-q)$ diagonals, where p and q are integers.
(i) Find the values of p and q.

$$
\begin{aligned}
\operatorname{Answer}(c)(\mathrm{i}) p & =\text {....................................... } \\
q & =\text {.. }
\end{aligned}
$$

(ii) Find the total number of diagonals in a polygon with 100 sides.

Answer(c)(ii)
(iii) Find the number of sides of a polygon which has a total of 170 diagonals.

> Answer(c)(iii)
(d) A polygon with $n+1$ sides has 30 more diagonals than a polygon with n sides. Find n.

$$
\text { Answer(d) } n=
$$

$0580 / 23$

mur 28 Maths comm
$9 \quad 1$ second $=10^{6}$ microseconds.
Change 3×10^{13} microseconds into minutes. Give your answer in standard form.

Answer

min

10 The length of each side of an equilateral triangle is 74 mm , correct to the nearest millimetre.
Calculate the smallest possible perimeter of the triangle.

11

The diagram shows a point P at the top of a cliff.
The point F is on the beach and vertically below P.
The point A is 55 m from F, along the horizontal beach.
The angle of elevation of P from A is 17°.
Calculate $P F$, the height of the cliff.

Find the three inequalities which define the shaded region on the grid.

$0580 / 43$

mur. 28 Maths.com

5 (a)

The diagram shows two triangles $A C B$ and $A P Q$.
Angle $P A Q=$ angle $B A C$ and angle $A Q P=$ angle $A B C$.
$A B=4 \mathrm{~cm}, B C=3.6 \mathrm{~cm}$ and $A Q=3 \mathrm{~cm}$.
(i) Complete the following statement.

Triangle $A C B$ is to triangle $A P Q$.
(ii) Calculate the length of $P Q$.

$$
\text { Answer(a)(ii) } P Q=
$$

\qquad
(iii) The area of triangle $A C B$ is $5.6 \mathrm{~cm}^{2}$.

Calculate the area of triangle $A P Q$.
(b)

R, H, S, T and U lie on a circle, centre O.
$H T$ is a diameter and $M N$ is a tangent to the circle at T.
Angle $R T M=61^{\circ}$.
Find
(i) angle $R T H$,

$$
\text { Answer(b)(i) Angle } R T H=
$$

(ii) angle $R H T$,

$$
\text { Answer(b)(ii) Angle } R H T=
$$

(iii) angle $R S T$,

$$
\text { Answer(b)(iii) Angle } R S T=
$$

(iv) angle RUT.

Answer(b)(iv) Angle $R U T=$
(c) $A B C D E F$ is a hexagon.

The interior angle B is 4° greater than interior angle A.
The interior angle C is 4° greater than interior angle B, and so on, with each of the next interior angles 4° greater than the previous one.
(i) By how many degrees is interior angle F greater than interior angle A ?
Answer(c)(i)
(ii) Calculate interior angle A.

10

Diagram 1 Diagram 2
Diagram 3
Diagram 4
The diagrams show squares and dots on a grid.
Some dots are on the sides of each square and other dots are inside each square.
The area of the square (shaded) in Diagram 1 is 1 unit 2.
(a) Complete Diagram 4 by marking all the dots.
(b) Complete the columns in the table below for Diagrams 4, 5 and n.

Diagram	1	2	3	4	5	-------	n
Number of units of area	1	4	9			-------	
Number of dots inside the square	1	5	13			-------	$(n-1)^{2}+n^{2}$
Number of dots on the sides of the square	4	8	12			-------	
Total number of dots	5	13	25			---	

(c) For Diagram 200, find the number of dots
(i) inside the square,
(ii) on the sides of the square.
Answer(c)(ii) [1]
(d) Which diagram has 265 dots inside the square?

0580/21

mun. 28 Madtrs com

5 (a)

This cuboid has a square cross-section.
Write down the number of planes of symmetry.

> Answer(a)
(b)

This cuboid has a rectangular cross-section.
The axis shown passes through the centre of two opposite faces.
Write down the order of rotational symmetry of the cuboid about this axis.
$11 A B C D$ is a rectangle with $A B=10 \mathrm{~cm}$ and $B C=6 \mathrm{~cm} . M N$ is the perpendicular bisector of $B C$. $A P$ is the bisector of angle $B A D$.
O is the midpoint of $A B$ and also the centre of the semicircle, radius 5 cm .

Write the letter R in the region which satisfies all three of the following conditions.

- nearer to $A B$ than to $A D$
- nearer to C than to B
- less than 5 cm from O

12 Make x the subject of $y=\frac{(x+3)^{2}}{5}$.

13 Solve the inequality.

$$
2 x+5<\frac{x-1}{4}
$$

For

14 Find the value of n in the following equations.
(a) $2^{n}=1024$

$$
\operatorname{Answer}(a) n=
$$

(b) $4^{2 n-3}=16$

15

A semicircle of diameter 6 cm is cut from a rectangle with sides 6 cm and 8 cm .
Calculate the perimeter of the shaded shape, correct to 1 decimal place.

$0580 / 41$

An open water storage tank is in the shape of a cylinder on top of a cone.
The radius of both the cylinder and the cone is 1.5 m .
The height of the cylinder is 4 m and the height of the cone is 2 m .
(a) Calculate the total surface area of the outside of the tank.
[The curved surface area, A, of a cone with radius r and slant height l is $A=\pi r l$.]

Answer(a) m^{2}
(b) The tank is completely full of water.
(i) Calculate the volume of water in the tank and show that it rounds to $33 \mathrm{~m}^{3}$, correct to the nearest whole number.
[The volume, V, of a cone with radius r and height h is $V=\frac{1}{3} \pi r^{2} h$.]
Answer(b)(i)
(ii)

The cross-section of an irrigation channel is a semi-circle of radius 0.5 m .
The $33 \mathrm{~m}^{3}$ of water from the tank completely fills the irrigation channel.
Calculate the length of the channel.

Answer(b)(ii) \qquad m
(c) (i) Calculate the number of litres in a full tank of $33 \mathrm{~m}^{3}$.
Answer(c)(i)
(ii) The water drains from the tank at a rate of 1800 litres per minute.

Calculate the time, in minutes and seconds, taken to empty the tank.

6 (a)

The diagram shows a toy boat.
$A C=16.5 \mathrm{~cm}, A B=19.5 \mathrm{~cm}$ and $P R=11 \mathrm{~cm}$.
Triangles $A B C$ and $P Q R$ are similar.
(i) Calculate $P Q$.

$$
\text { Answer(a)(i) } P Q=
$$

(ii) Calculate $B C$.
(iii) Calculate angle $A B C$.
(iv) The toy boat is mathematically similar to a real boat.

The length of the real boat is 32 times the length of the toy boat.
The fuel tank in the toy boat holds 0.02 litres of diesel.
Calculate how many litres of diesel the fuel tank of the real boat holds.
(b)

The diagram shows a field $D E F G$, in the shape of a quadrilateral, with a footpath along the diagonal $D F$.
$D F=105 \mathrm{~m}$ and $F G=67 \mathrm{~m}$.
Angle $E D F=70^{\circ}$, angle $E F D=32^{\circ}$ and angle $D F G=143^{\circ}$.
(i) Calculate $D G$.

$$
\text { Answer(b)(i) } D G=
$$

m
(ii) Calculate $E F$.

7 (a)

A, B, C and D are points on the circumference of a circle centre O.
$A C$ is a diameter.
$B D=B C$ and angle $D B C=62^{\circ}$.
Work out the values of w, x, y and z.
Give a reason for each of your answers.

```
w= .......................... because ................................................................... [2]
x= ......................... because ................................................................. [2]
y= .......................... because .................................................................. [2]
z= .......................... because ...................................................................
(b)

(i) Write down \(\overrightarrow{A B}\) as a column vector.
\[
\operatorname{Answer}(b)(\mathrm{i}) \overrightarrow{A B}=(\quad)
\]
(ii) \(\overrightarrow{A C}=\binom{0}{7}\).

Work out \(\overrightarrow{B C}\) as a column vector.
\[
\operatorname{Answer}(b)(\mathrm{ii)} \overrightarrow{B C}=(
\]
(c)

\(\overrightarrow{O R}=\mathbf{r}\) and \(\overrightarrow{O T}=\mathbf{t}\).
\(P\) is on \(R T\) such that \(R P: P T=2: 1\).
\(Q\) is on \(O T\) such that \(O Q=\frac{2}{3} O T\).
Write the following in terms of \(\mathbf{r}\) and/or \(\mathbf{t}\).
Simplify your answers where possible.
(i) \(\overrightarrow{Q T}\)
\[
\text { Answer(c)(i) } \overrightarrow{Q T}=
\]
(ii) \(\overrightarrow{T P}\)
\[
\text { Answer(c)(ii) } \overrightarrow{T P}=
\]
(iii) \(\overrightarrow{Q P}\)
\[
\text { Answer(c)(iii) } \overrightarrow{Q P}=
\]
(iv) Write down two conclusions you can make about the line segment \(Q P\).

Answer(c)(iv)

9 (a) The first five terms \(P_{1}, P_{2}, P_{3}, P_{4}\) and \(P_{5}\) of a sequence are given below.
\begin{tabular}{ll}
1 & \(=1=\mathrm{P}_{1}\) \\
\(1+2\) & \(=3=\mathrm{P}_{2}\) \\
\(1+2+3\) & \(=6=\mathrm{P}_{3}\) \\
\(1+2+3+4\) & \(=10=\mathrm{P}_{4}\) \\
\(1+2+3+4+5\) & \(=15=\mathrm{P}_{5}\)
\end{tabular}
(i) Write down the next term, \(\mathrm{P}_{6}\), in the sequence \(1,3,6,10,15 \ldots\)
Answer(a)(i)
(ii) The formula for the \(n\)th term of this sequence is
\[
\mathrm{P}_{n}=\frac{1}{2} n(n+1)
\]

Show this formula is true when \(n=6\).

Answer (a)(ii)
(iii) Use the formula to find \(\mathrm{P}_{50}\), the 50th term of this sequence.
Answer(a)(iii)
(iv) Use your answer to part (iii) to find \(3+6+9+12+15+\) \(\qquad\) +150 .

\section*{Answer(a)(iv)}
(v) Find \(1+2+3+4+5+\) \(\qquad\) \(+150\).
\[
\operatorname{Answer}(a)(\mathrm{v})
\]
(vi) Use your answers to parts (iv) and (v) to find the sum of the numbers less than 150 which are not multiples of 3 .
Answer(a)(vi)

This question continues on the next page.
(b) The first five terms, \(S_{1}, S_{2}, S_{3}, S_{4}\) and \(S_{5}\) of a different sequence are given below.
\((1 \times 1)\)
\((1 \times 2)+(2 \times 1)\)
\((1 \times 3)+(2 \times 2)+(3 \times 1)\)
\((1 \times 4)+(2 \times 3)+(3 \times 2)+(4 \times 1)\)
\[
(1 \times 5)+(2 \times 4)+(3 \times 3)+(4 \times 2)+(5 \times 1)
\]
\[
\begin{aligned}
& =1=\mathrm{S}_{1} \\
& =4=\mathrm{S}_{2} \\
& =10=\mathrm{S}_{3} \\
& =20=\mathrm{S}_{4} \\
& =35=\mathrm{S}_{5}
\end{aligned}
\]
(i) Work out the next term, \(\mathrm{S}_{6}\), in the sequence \(1,4,10,20,35 \ldots\)
Answer(b)(i)
(ii) The formula for the \(n\)th term of this sequence is
\[
\mathrm{S}_{n}=\frac{1}{6} n(n+1)(n+2) .
\]

Show this formula is true for \(n=6\).

Answer(b)(ii)
(iii) Find \((1 \times 20)+(2 \times 19)+(3 \times 18)\) \(\qquad\) \(+(20 \times 1)\).
(c) Show that \(S_{6}-S_{5}=P_{6}\), where \(P_{6}\) is your answer to part (a)(i).

Answer(c)
(d) Show by algebra that \(\mathrm{S}_{n}-\mathrm{S}_{n-1}=\mathrm{P}_{n} . \quad\left[\mathrm{P}_{n}=\frac{1}{2} n(n+1)\right]\)

Answer(d)

\section*{\(0580 / 22\)}


1


For the diagram, write down
(a) the order of rotational symmetry,

> Answer(a)
(b) the number of lines of symmetry.
Answer(b)

2 In a group of 30 students, 18 have visited Australia, 15 have visited Botswana and 5 have not visited either country.

Work out the number of students who have visited Australia but not Botswana.

3 Rearrange the formula \(J=m v-m u\) to make \(m\) the subject.

\(O\) is the centre of the circle.
\(D A\) is the tangent to the circle at \(A\) and \(D B\) is the tangent to the circle at \(C\).
\(A O B\) is a straight line. Angle \(C O B=50^{\circ}\).
Calculate
(a) angle \(C B O\),
\[
\text { Answer(a) Angle } C B O=
\]
(b) angle \(D O C\).

5

\(J G R\) is a right-angled triangle. \(J R=50 \mathrm{~m}\) and \(J G=20 \mathrm{~m}\).
Calculate angle \(J R G\).

\section*{6 Write 0.00658}
(a) in standard form,

> Answer(a)
(b) correct to 2 significant figures.

10


The pentagon has three angles which are each \(140^{\circ}\).
The other two interior angles are equal.
Calculate the size of one of these angles.

\section*{Answer}

11 The resistance, \(R\), of an object being towed through the water varies directly as the square of the speed, \(v\).
\(R=50\) when \(v=10\).
Find \(R\) when \(v=16\).
\[
\text { Answer } R=
\]

12 Write as a single fraction, in its simplest form.
\[
\frac{3}{x+2}-\frac{2}{x-1}
\]

\title{
\(0580 / 42\)
}

mum: 28 Mhaticame

4 (a)


NOT TO
SCALE

The diagram shows a cone of radius 4 cm and height 13 cm .
It is filled with soil to grow small plants.
Each cubic centimetre of soil has a mass of 2.3 g .
(i) Calculate the volume of the soil inside the cone.
[The volume, \(V\), of a cone with radius \(r\) and height \(h\) is \(V=\frac{1}{3} \pi r^{2} h\).]

Answer(a)(i) \(\qquad\) \(\mathrm{cm}^{3}\)
(ii) Calculate the mass of the soil.
Answer(a)(ii)
(iii) Calculate the greatest number of these cones which can be filled completely using 50 kg of soil.
Answer(a)(iii)
(b) A similar cone of height 32.5 cm is used for growing larger plants.

Calculate the volume of soil used to fill this cone.
(c)


Some plants are put into a cylindrical container with height 12 cm and volume \(550 \mathrm{~cm}^{3}\).
Calculate the radius of the cylinder.

6


The diagram shows the positions of London \((L)\), Dubai \((D)\) and Colombo \((C)\).
(a) (i) Show that \(L C\) is 8710 km correct to the nearest kilometre.

Answer(a)(i)
(ii) Calculate the angle \(C L D\).
(b) A plane flies from London to Dubai and then to Colombo.

It leaves London at 0150 and the total journey takes 13 hours and 45 minutes.
The local time in Colombo is 7 hours ahead of London.
Find the arrival time in Colombo.

> Answer(b)
(c) Another plane flies the 8710 km directly from London to Colombo at an average speed of \(800 \mathrm{~km} / \mathrm{h}\).
How much longer did the plane in part (b) take to travel from London to Colombo?
Give your answer in hours and minutes, correct to the nearest minute.

10 In all the following sequences, after the first two terms, the rule is to add the previous two terms to find the next term.
(a) Write down the next two terms in this sequence.
1
12
3
5
8
13
[1]
(b) Write down the first two terms of this sequence. ........ ........ 3 11 14
(c) (i) Find the value of \(d\) and the value of \(e\).
2
\(d\)
\(e\)
10
\[
\begin{aligned}
\text { Answer }(c)(\mathrm{i}) d & = \\
e & =
\end{aligned}
\]
\(\qquad\)
(ii) Find the value of \(x\), the value of \(y\) and the value of \(z\).
\[
\begin{array}{lllll}
-33 & x & y & z & 18
\end{array}
\]
\[
\text { Answer(c)(ii) } x=
\]
\(\qquad\)
\[
y=
\]
\(\qquad\)
\[
z=
\]

\title{
\(0580 / 23\)
}

mun. 28 NHathicame

9

\(A P B\) and \(A Q C\) are straight lines. \(P Q\) is parallel to \(B C\).
\(A P=8 \mathrm{~cm}, P Q=10 \mathrm{~cm}\) and \(B C=12 \mathrm{~cm}\).
Calculate the length of \(A B\).
\[
\text { Answer } A B=
\]
\(\qquad\) cm

10 Nikhil invests \(\$ 200\) for 2 years at \(4 \%\) per year compound interest.
Calculate the exact amount Nikhil has after 2 years.

Answer \$

11 In a group of 24 students, 21 like football and 15 like swimming.
One student does not like football and does not like swimming.
Find the number of students who like both football and swimming.

21

The graph shows 40 seconds of a car journey.
The car travelled at a constant speed of \(20 \mathrm{~m} / \mathrm{s}\), decelerated to \(8 \mathrm{~m} / \mathrm{s}\) then accelerated back to \(20 \mathrm{~m} / \mathrm{s}\).
Calculate
(a) the deceleration of the car,
\[
\text { Answer(a) .............................................. m/s }{ }^{2}
\]
(b) the total distance travelled by the car during the 40 seconds.

23


The points \(A, B, C\) and \(D\) lie on the circumference of the circle, centre \(O\).
Angle \(A B D=30^{\circ}\), angle \(C A D=50^{\circ}\) and angle \(B O C=86^{\circ}\).
(a) Give the reason why angle \(D B C=50^{\circ}\).

Answer(a)
(b) Find
(i) angle \(A D C\),
\[
\text { Answer(b)(i) Angle } A D C=
\]
(ii) angle \(B D C\),
\[
\begin{equation*}
\text { Answer(b)(ii) Angle } B D C= \tag{1}
\end{equation*}
\]
(iii) angle \(O B D\).

Questions 24 and 25 are printed on the next page.

\title{
\(0580 / 43\)
}

unn: D8NHatromen


NOT TO SCALE

The diagram shows five straight roads.
\(P Q=4.5 \mathrm{~km}, Q R=4 \mathrm{~km}\) and \(P R=7 \mathrm{~km}\).
Angle \(R P S=40^{\circ}\) and angle \(P S R=85^{\circ}\).
(a) Calculate angle \(P Q R\) and show that it rounds to \(110.7^{\circ}\).

Answer(a)
(b) Calculate the length of the road \(R S\) and show that it rounds to 4.52 km . Answer(b)
(c) Calculate the area of the quadrilateral \(P Q R S\).
[Use the value of \(110.7^{\circ}\) for angle \(P Q R\) and the value of 4.52 km for \(R S\).]


The diagram shows a solid made up of a hemisphere and a cylinder.
The radius of both the cylinder and the hemisphere is 3 cm .
The length of the cylinder is 12 cm .
(a) (i) Calculate the volume of the solid.
[ The volume, \(V\), of a sphere with radius \(r\) is \(V=\frac{4}{3} \pi r^{3}\).]

\section*{Answer(a)(i)}
\(\qquad\) \(\mathrm{cm}^{3}\)
(ii) The solid is made of steel and \(1 \mathrm{~cm}^{3}\) of steel has a mass of 7.9 g . Calculate the mass of the solid.
Give your answer in kilograms.
(iii) The solid fits into a box in the shape of a cuboid, 15 cm by 6 cm by 6 cm . Calculate the volume of the box not occupied by the solid.
```

Answer(a)(iii)
cm

```
(b) (i) Calculate the total surface area of the solid.

You must show your working.
[ The surface area, \(A\), of a sphere with radius \(r\) is \(A=4 \pi r^{2}\).]

\section*{Answer(b)(i)}
\(\mathrm{cm}^{2}\)
(ii) The surface of the solid is painted.

The cost of the paint is \(\$ 0.09\) per millilitre.
One millilitre of paint covers an area of \(8 \mathrm{~cm}^{2}\).
Calculate the cost of painting the solid.

10 (a) For a set of six integers, the mode is 8 , the median is 9 and the mean is 10 .
The smallest integer is greater than 6 and the largest integer is 16 .
Find the two possible sets of six integers.
```

Answer(a) First set
Second set

```
\(\qquad\)
``` ,
``` \(\qquad\)
``` . ,
``` \(\qquad\)
``` . ,
``` \(\qquad\)
\(\qquad\)
``` ,
``` \(\qquad\)
``` Second set .......... , ......... , ......... , ......... , ......... , ..........
```

(b) One day Ahmed sells 160 oranges.

He records the mass of each orange.
The results are shown in the table.

Mass ( $m$ grams)	$50<m \leqslant 80$	$80<m \leqslant 90$	$90<m \leqslant 100$	$100<m \leqslant 120$	$120<m \leqslant 150$
Frequency	30	35	40	40	15

(i) Calculate an estimate of the mean mass of the 160 oranges.
(ii) On the grid, complete the histogram to show the information in the table.


Question 11 is printed on the next page.


Diagram 1


Diagram 2


Diagram 3


Diagram 4

The first four Diagrams in a sequence are shown above.
Each Diagram is made from dots and one centimetre lines.
The area of each small square is $1 \mathrm{~cm}^{2}$.
(a) Complete the table for Diagrams 5 and 6.

Diagram	1	2	3	4	5	6
Area $\left(\mathrm{cm}^{2}\right)$	2	6	12	20		
Number of dots	6	12	20	30		
Number of one centimetre lines	7	17	31	49		

(b) The area of Diagram $n$ is $n(n+1) \mathrm{cm}^{2}$.
(i) Find the area of Diagram 50.

Answer(b)(i) $\mathrm{cm}^{2}$
(ii) Which Diagram has an area of $930 \mathrm{~cm}^{2}$ ?
Answer(b)(ii)
(c) Find, in terms of $n$, the number of dots in Diagram $n$.
(d) The number of one centimetre lines in Diagram $n$ is $2 n^{2}+p n+1$.
(i) Show that $p=4$.

Answer(d)(i)
(ii) Find the number of one centimetre lines in Diagram 10.

> Answer(d)(ii)
(iii) Which Diagram has 337 one centimetre lines?

Answer(d)(iii)
(e) For each Diagram, the number of squares of area $1 \mathrm{~cm}^{2}$ is $A$, the number of dots is $D$ and the number of one centimetre lines is $L$.

Find a connection between $A, D$ and $L$ that is true for each Diagram.

Answer(e)


[^0]:    Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

    University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

