Loci & Constructions 2002 - 2011

www.Q8maths.com

The point A lies on the circle centre O, radius 5 cm.

- (a) Using a straight edge and compasses only, construct the perpendicular bisector of the line OA. [2]
- (b) The perpendicular bisector meets the circle at the points C and D.

Measure and write down the size of the angle AOD.

$$Answer(b) \text{ Angle } AOD =$$
[1]

A(1, 3), B(4, 1) and C(6, 4) are shown on the diagram.

- (a) Using a straight edge and compasses only, construct the angle bisector of angle *ABC*. [2]
- (b) Work out the equation of the line *BC*.

Answer(b) [3]

(c) *ABC* forms a **right-angled isosceles** triangle of area 6.5 cm^2 .

Calculate the length of *AB*.

 $Answer(c) AB = \qquad \qquad \text{cm } [2]$

18 The diagram is a scale drawing of a field. The actual length of the side *AB* is 100 metres.

(a) Write the scale of the drawing in the form 1 : n, where n is an integer.

Answer (a) 1 : [1]

- (b) In this part use a straight edge and compasses only. Leave in your construction lines.
 - (i) A tree in the field is equidistant from the point *A* and the point *D*. Construct the line on which the tree stands. [2]
 - (ii) The tree is also equidistant from the sides *BC* and *CD*. After constructing another line, mark the position of the tree and label it *T*. [3]

13 Make *d* the subject of the formula

$$c = kd^2 + e.$$

Answer
$$d =$$
 [3]

In this question show clearly all your construction arcs.

(a)	Using a straight	edge and	compasses	only,	construct	on the	diagram	above,
-----	------------------	----------	-----------	-------	-----------	--------	---------	--------

(i)	the perpendicular bisector of <i>BD</i> ,	[2]
(ii)	the bisector of angle CDA.	[2]

(b) Shade the region, inside the quadrilateral, which is nearer to D than B and nearer to DC than DA. [1]

The diagram shows a plan for a new city. It is to be built inside a circle of radius 5 km. The areas where homes can be built are shaded on the diagram. The homes must be at least 2 km from the centre of the city, *O*. The homes must also be at least 0.5 km from two main roads *CD* and *AB*, which are in North-South and West-East directions.

- (a) Using 1 cm to represent 1 km, make an accurate scale drawing showing the areas for the homes. (You do not need to shade these areas.) [4]
- (b) The town hall, *T*, will be built so that it is equidistant from the roads *OA* and *OC*. It will be 1 km from *O* and West of *CD*.
 - (i) On your scale drawing, using a straight edge and compasses only, draw the locus of points, inside the town, which are equidistant from *OA* and *OC*. [2]

	(ii) Mark and label the point <i>T</i> .	[1]
(c)	The police station, P , will be built so that it is equidistant from T and B . It will be 3 km from O and North of AB . Showing all your construction lines, find and label the point P .	[3]
(d)	What will be the actual straight line distance between the town hall and the police station?	[1]

4

The diagram shows a map of part of a coastline. 1 centimetre represents 40 metres.

(a)	A ferry leaves a port P and travels between two islands so that it is always equidistant from A and B . Using a straight edge and compasses only, draw this locus.	[2]
(b)	For safety reasons the ferry must be at least 120 metres from a ship at D . Draw the locus of the points which form the boundary of safety around D .	[1]
()		

(c) When the ferry is 120 metres from *D* it must change direction. How far is the ferry from the port *P* then?

Answer(c) m[1]

OPQR is a parallelogram. *O* is the origin. $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OR} = \mathbf{r}$. *M* is the mid-point of *PQ* and *L* is on *OR* such that *OL* : *LR* = 2 : 1. The line *PL* is extended to the point *S*.

(a) Find, in terms of **p** and **r**, in their simplest forms,

[1]

(ii)
$$\overrightarrow{PR}$$
, [1]

(iii)
$$\overrightarrow{PL}$$
, [1]

(iv) the position vector of M. [1]

(b)	<i>PLS</i> is a straight line and $PS = \frac{3}{2}PL$.	
	Find, in terms of p and/or r , in their simplest forms,	
	(i) \overrightarrow{PS} ,	[1]
	(ii) \overrightarrow{QS} .	[2]
(c)	What can you say about the points Q , R and S ?	[1]

In triangle *PQR*, angle *QPR* is acute, PQ = 10 cm and PR = 14 cm.

(a) The area of triangle PQR is 48 cm^2 .

Calculate angle QPR and show that it rounds to 43.3°, correct to 1 decimal place. You must show all your working.

Answer (a)

(b) Calculate the length of the side QR.

[3]

Answer(b) QR = cm [4]

The diagram shows a farmer's field *ABC*.

The farmer decides to grow potatoes in the region of the field which is

• nearer to *A* than to *C*

and

• nearer to *AB* than to *AC*.

Using a straight edge and compasses only, construct two loci accurately and shade this region on the diagram.

[5]

(a) On the diagram above, using a straight edge and compasses only, construct

	(i)	the bisector of angle <i>ABC</i> ,	[2]
	(ii)	the locus of points which are equidistant from A and from B .	[2]
(b)	Sha	de the region inside the triangle which is nearer to A than to B and nearer to AB than to	<i>BC</i> . [1]

(a) On the diagram above, using a straight edge and compasses only, construct

	(i)	the bisector of angle <i>ABC</i> ,	[2]
	(ii)	the locus of points which are equidistant from A and from B .	[2]
(b)	Sha	de the region inside the triangle which is nearer to A than to B and nearer to AB than to	<i>BC</i> . [1]

9 (a) In the space below, construct the triangle ABC with AB = 10 cm and AC = 12 cm. Leave in your construction arcs. The line BC is already drawn.

[2]

С

B

(b) Measure angle *ABC*.

Answer(b) Angle ABC =[1]

(c) (i) Using a straight edge and compasses only, and leaving in your construction arcs, construct the perpendicular bisector of *BC*. [2]
(ii) This bisector cuts *AC* at *P*. Mark the position of *P* on the diagram and measure *AP*. *Answer(c)*(ii) *AP* = _____ cm [1]
(d) Construct the locus of all the points inside the triangle which are 5 cm from *A*. [1]
(e) Shade the region inside the triangle which is

nearer to *B* than to *C*

and

• less than 5 cm from A. [2]

(a)	In the space above, construct triangle PQR with $QR = 9$ cm and $PR = 7$ cm. Leave in your construction arcs. The line PQ is already drawn.	[2]
(b)	Using a straight edge and compasses only, construct	
	(i) the perpendicular bisector of PR ,	[2]
	(ii) the bisector of angle <i>QPR</i> .	[2]
(c) (d)	Shade the region inside the triangle PQR which is nearer to P than to R and nearer to PQ than to PR . Triangle PQR is a scale drawing with a scale 1 : 50 000.	[1]
	Find the actual distance <i>QR</i> . Give your answer in kilometres.	

Answer(d) km [2]

- Q

 P^{-}

(a)	Dra poi	aw accurately the locus of points, inside the quadrilateral <i>ABCD</i> , which are 6 cm from the nt <i>D</i> .	1e [1]
(b)	Usi	ing a straight edge and compasses only, construct	
	(i)	the perpendicular bisector of AB ,	[2]
	(ii)	the locus of points, inside the quadrilateral, which are equidistant from AB and from B	<i>C.</i> [2]
(c)	The	e point Q is equidistant from A and from B and equidistant from AB and from BC .	
	(i)	Label the point Q on the diagram.	[1]
	(ii)	Measure the distance of Q from the line AB .	
		Answer(c)(ii) c	m [1]
(d)	On	the diagram, shade the region inside the quadrilateral which is	
		• less than 6 cm from D and	
		 nearer to A than to B and 	

• nearer to AB than to BC. [1]

Find, by using **accurate** constructions, the region inside the circle which contains the points more than 5 cm from *G* and nearer to *H* than to *G*. Shade this region. [4]

PT and PU are tangents to an arc of a circle at T and U.

15

- (a) Using a straight edge and compasses only, construct the bisector of angle *TPU*. [2]
- (b) By drawing another line accurately, find the centre of the circle and label it O. [2]

16 The straight line graph of y = 3x - 6 cuts the x-axis at A and the y-axis at B.

(a) Find the coordinates of A and the coordinates of B.

Answer (a) A (.....)

B (.....) [2]

(**b**) Calculate the length of *AB*.

(c) *M* is the mid-point of *AB*. Find the coordinates of *M*.

Answer (c) (.....) [1]

The diagram shows a quadrilateral ABCD.

- (a) Draw the locus of points in the quadrilateral which are 5 cm from A.
- (b) Using a straight edge and compasses only, draw the locus of all points inside the quadrilateral which are equidistant from C and D. Show all your construction lines. [2]
- (c) Shade the region which contains points in the quadrilateral that are more than 5 cm from A and nearer to D than to C.

[1]

F

[1]

16

[1]

- [1]
- [2]

(a) In this part of the question use a straight edge and compasses only.

Leaving in your construction lines,

- (i) construct the angle bisector of angle *ACB*, [2]
- (ii) construct the perpendicular bisector of AC. [2]
- (b) Draw the locus of all the points inside the triangle *ABC* which are 7 cm from *C*. [1]
- (c) Shade the region inside the triangle which is nearer to A than C, nearer to BC than AC and less than 7 cm from C. [1]

23 Showing all your working, solve

(a)
$$\frac{5x}{2} - 9 = 0$$
,

Answer(a) x = [2]

(b) $x^2 + 12x + 3 = 0$, giving your answers correct to 1 decimal place.

Answer(b) x = [4]

The diagram shows a triangle *EFG*. The side *EF* is extended to *H*.

(a) Using a straight edge and compasses only, showing your construction arcs, draw

(i)	the locus of points that are equidistant from E and G ,	[2]
(ii)	the locus of points that are equidistant from FG and FH.	[2]

(b) Measure accurately and write down the acute angle between the two lines drawn in part (a).

Answer(b) [1]

The diagram shows the plan of a garden.

The garden is a trapezium with AB = 26 metres, DC = 18 metres and angle $DAB = 80^{\circ}$.

A straight path from *B* to *D* has a length of 30 metres.

(a)	(i)	Using a scale of 1:200, draw an accurate plan of the garden.	[3]
	(ii)	Measure and write down the size of angle <i>ADB</i> and the size of angle <i>DCB</i> .	[2]
((iii)	A second path is such that all points on it are equidistant from <i>AB</i> and from <i>AD</i> .	
		Using a straight edge and compasses only, construct this path on your plan.	[2]
((iv)	A third path is such that all points on it are equidistant from A and from D.	
		Using a straight edge and compasses only, construct this path on your plan.	[2]
	(v)	In the garden, vegetables are grown in the region which is nearer to AB than to AD and nearer to A than to D .	
		Shade this region on your plan.	[1]
(b)	Use	trigonometry, showing all your working, to calculate	
	(i)	angle <i>ADB</i> ,	[3]
	(ii)	the length of <i>BC</i> ,	[4]
((iii)	the area of the garden.	[3]

The boundary of a park is in the shape of a triangle *ABC*. AB = 240 m, BC = 180 m and CA = 140 m.

In part (a), show clearly all your construction arcs.

(a) (i) Using a scale of 1 centimetre to represent 20 metres, construct an accurate scale drawing of triangle *ABC*. The line *AB* has already been drawn for you.

(ii)	Using a straight edge and compasses only, construct the bisector of angle <i>ACB</i> .	[2]
	Label the point D , where this bisector meets AB .	[2]
(iii)	Using a straight edge and compasses only, construct the locus of points, inside the tri which are equidistant from A and from D .	angle, [2]
(iv)	Flowers are planted in the park so that they are nearer to AC than to BC and to D than to A .	nearer
	Shade the region inside your triangle which shows where the flowers are planted.	[1]

В

Α

In part (b), use trigonometry.

You must show your working and must NOT use any measurements from your construction in part (a).

(b) (i) Show clearly that angle ACB is 96.4°.

Answer(b)(i)

(ii) Calculate the area of the park.

Answer(b)(ii) m^2 [2]

(iii) Use the sine rule to calculate angle *ABC*.

Answer(b)(iii) Angle ABC =[3]

[3]

The diagram shows an area of land *ABCD* used for a shop, a car park and gardens.

(a)	Using a straight edge and compasses only, construct			
	(i)	the locus of points equidistant from C and from D,	[2]	
	(ii)	the locus of points equidistant from AD and from AB.	[2]	
(b)	The Wri	shop is on the land nearer to <i>D</i> than to <i>C</i> and nearer to <i>AD</i> than to <i>AB</i> . te the word SHOP in this region on the diagram.	[1]	
(c)	(i)	The scale of the diagram is 1 centimetre to 20 metres. The gardens are the part of the land less than 100 m from B . Draw the boundary for the gardens.	[1]	
	(ii)	The car park is the part of the land not used for the shop and not used for the gardens. Shade the car park region on the diagram.	[1]	

(a) Draw accurately the locus of points inside the triangle

(i) $6 \operatorname{cm} \operatorname{from} B$, [1]

(ii) equidistant from AC and BC. [1]

(b) Shade the region inside the triangle which is more than 6 cm from *B* and nearer to *BC* than to *AC*. [1]