Polygons - Paper 2 - Mark Scheme

Question 1

6	135 cao	$\mathbf{3}$	M1 for 720 or $(6-2) \times 180$ oe seen in working and M1 for equation $180+4 x=$ their 720 or M1 for $(360-180) \div 4(=45)$ oe seen in working and M1 dep for $180-$ their 45

Question 2

$\mathbf{1 0}$	60	3	B1 540 used M1 [their $540-3 \times 140] / 2$

Question 3

$\mathbf{1}$	95	$\mathbf{2}$	B1 for 85 seen or M1 $x=180-$ their angle $A D C$, if it is clearly seen

Question 4

$\mathbf{4}$	60	$\mathbf{2}$	M1 $360 \div 6$

Question 5

$\mathbf{9}$	decagon	$\mathbf{3}$	M1 for $360 \div 36$ oe A1 for 10

Question 6

7	160	$\mathbf{3}$	M2 for $180-\frac{360}{18}$ or $\frac{180 \times(18-2)}{18}$ oe
or M1 for $180 \times(18-2)$ or $\frac{360}{18}$			

Question 7

$\mathbf{8}$	4140	$\mathbf{2}$	M1 for $(25-2) \times 180$ or $25 \times\left(180-\frac{360}{25}\right)$

Question 8

8	(a)	68	$\mathbf{1}$	
	(b)	15	$\mathbf{2}$	M1 for $\frac{360}{n}=24$ or $(n-2) 180=156 n$

Question 9

$\mathbf{1 8}$	(a)	47	$\mathbf{1}$	
	(b)	117	$\mathbf{2}$	M1 for $360-(115+85+97)$
	(c)	244	$\mathbf{2}$	B1 for 116 seen at centre or 122 seen at circumference

Question 10

$\mathbf{1 7}$	145	$\mathbf{3}$	M2 for $(6-2) \times 180-5 \times 115$ or M1 for $(6-2) \times 180$ Alt method
M2 for $180-(360-5 \times(180-115))$ or M1 for $360-5 \times(180-115)$			

Question 11

$\mathbf{9}$	45	$\mathbf{3}$	M2 for $360 \div(180-172)$ or M1 for $180-172$ or $\frac{180(n-2)}{n}=172$ oe

Question 12

| $\mathbf{1 3}$(a) 72
 (b) 123 | $\mathbf{1}$ | |
| :--- | :--- | :--- | :---: | :--- |
| 2FT | FT dep. on answer being obtuse
 M1 for $(360-\operatorname{their}(a)-42)[\div 2]$ | |

Question 13

15 (a) (b)	$\begin{aligned} & 68 \\ & 9 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	M1 for $360 \div 40$ oe or $\frac{180(n-2)}{n}=140 \mathrm{oe}$

Question 14

17	60	$\mathbf{3}$	B2 for $x=6$ or M1 for $29 x+x=180$ oe and M1 for $360 \div 6$ or $360 \div$ their x or $180(n-2)=$ their $x \times 29 n$

Question 15

8	171	$\mathbf{2}$	M1 for $180-(360 \div 40)$ oe or $\frac{(40-2) \times 180}{40}$ oe

