Solid Geometry - Paper 4 - Mark Scheme

Question 1

7 (a)	4.53 or $4.526-4.530 \ldots$	3	SC2 for figs 453 or 4526-4530 If SC0, M1 for $\pi \times(\text { figs } 31)^{2} \times 15$
(b)	3.62 to 3.624 ft	2 ft	M1 for their (a) \times figs 8 oe
(c) (i)	$360-2 \times 90-60$ oe	2	E2 The 90's and the 60 must be clearly justified. Accept in diagram. SC1 for 60 or two 90's soi in correct positions oe e.g $360 \div 3$ scores 0
(ii)	0.649 (0.6492 to 0.6493)	2	M1 for $\pi \times$ figs $62 \div 3$
(iii)	7.53 (7.527 or 7.528...)	3	M1 for their (ii) $\times 3$ M1 (indep) for $18 \times$ figs 31 This M is spoiled by extra lengths.
(iv)	112.9 to 113 ft	1 ft	$\mathbf{f t}$ their (iii) $\times 15$

Question 2

6 (a)	$\frac{4}{3} \pi \times 2.4^{3}$ $57.87-57.92$ to at least 4 figures	M1 A1	Must see method
(b) (i)	14.4, 9.6, 4.8	1, 1, 1	Any order
(ii)	$664(663.5-663.6) \mathrm{ft}$	1ft	
(iii)	315 or 316 or 317 (315.2-316.8) ft	1 ft	ft their (b)(ii) - $6 \times$ ' 57.9 ' (only if positive)
(iv)	507 (506.8-506.9) ft	2 ft	M1 for $(14.4 \times 9.6+14.4 \times 4.8+9.6 \times 4.8) \times 2$ or their 3 lengths.
(c) (i)	Height seen or implied as 6×4.8 or better $\pi \times 2.4^{2} \times$ their height 521 (520.8-521.3) www 3	M1	
		M1	Indep
		A1	
(ii)	174 or 173 (173.2-174.1) ft	1ft	ft their (c)(i) $-6 \times$ ' 57.9 ' only if positive
(iii)	470-471 cao www 3	3	M1 for $2 \times \pi \times 2.4^{2}$ (36.17 to 36.2), and M1 indep for $\pi \times 4.8 \times$ their height from (c)(i)

Question 3

8 (a)	$40 \div 10$ and $12 \div 6$ (or $12 \div 3$) and $6 \div 3$ (or $6 \div 6$) oe $4 \times 2 \times 2=16$ reducing (seen) to 16	E2	M1 Allow drawing for M1 but must see reaching 16 for E2 Reaching 16 without any errors or omissions $\mathbf{S C 1}$ for $\frac{40 \times 12 \times 6}{\text { their (b) }}$ even if $=16$ or $4 \times 2 \times 2=16$ or $4 \times 4 \times 1=16$ without other working
(b)	180	1	
(c) (i)	23640 (allow 23600)	2	M1 for their $180 \times 8 \times 16+600$
(ii)	23.64 (or 23.6) ft	1ft	ft their (i) $\div 1000$
(d) (i)	216	2	M1 for $(10 \times 6+10 \times 3+6 \times 3) \times 2$ oe
(ii)	8.64	3	M1 for their (i) $\times 16 \times 25$ M1 (indep) for $\div 100^{2}$ Figs 864 imply M1 only
(e)	75.3 (75.26 to 75.33...)	3	M1 for $\frac{4}{3} \pi \times 0.5^{3}$ (0.5235 ..) Implied also by 104.7.... then M1 (dep) for their (b) $-200 \times$ their $\frac{4}{3} \pi \times 0.5^{3}$ must be giving positive answer
(f)	$0.842(0.8419-0.8421)$	3	M1 for $\left(\frac{4}{3} \pi r^{3}\right)=50 \div 20$ then M1 for $\frac{50 \div 20}{\frac{4}{3} \pi}(0.5966$ to 0.5972$)$
			After 0 scored SC1 for $\sqrt[3]{\frac{50}{\frac{4}{3} \pi}}$ (implied by 2.29)

Question 4

Question 5

4	(a) (i) 218 (217.7 to 218) (ii) 501 (500.7 to 501.4) (iii) 99	$\begin{gathered} 2 \\ 1 \mathrm{ft} \\ 2 \mathrm{ft} \end{gathered}$	M1 for $1 / 3 \pi \times 4^{2} \times 13$ ft their (a) $\times 2.3$ $\mathrm{ft} 50000 \div$ their (a)(ii) and truncated to whole number M1 for $50000 \div$ their (a)(ii) oe or answers 99.8 or 100
	(b) their (a)(i) $\times\left(\frac{32.5}{13}\right)^{3}$ oe 3400 or 3410 (3401 to 3407)	M2 A1	or $1 / 3 \pi \times 10^{2} \times 32.5$ or M1 for $(32.5 \div 13)^{3}(=15.625)$ seen or $(13 \div 32.5)^{3}(=0.064)$ seen www3
	(c) $\left(r^{2}=\right) 550 \div 12 \pi$	M2	$\begin{aligned} & (14.58 \text { to } 14.6) \\ & \text { or M1 for } 12 \pi r^{2}=550 \text { or better } \end{aligned}$
	3.82 (3.818 to 3.821)	A1	www3

Question 6

\begin{tabular}{|c|c|c|c|}
\hline 8 \& \begin{tabular}{l}
(a) (i) \(396(395.6-396)\) \\
(ii) \(3.13(3.125-3.128 \ldots\)) ft \\
(iii) \(144(144-144.4) \mathrm{ft}\) \\
(b) (i) \(311(310.8-311.1)\) \\
(ii) \(3.50(3.496\) to 3.50\() \mathrm{ft}\)
\end{tabular} \& 4
2 ft
2 ft

5

2 ft \& | M1 for $\frac{2}{3} \times \pi \times 3^{3}$ and M1 (independent) for $\pi \times 3^{2} \times 12$, |
| :--- |
| M1 (dependent on M2) for adding |
| 126π implies M3 |
| ft their (i) $\times 7.9 \div 1000$. |
| M1 for $\times 7.9$ soi by figs 313 or $3125-3128 \ldots$ |
| ft $15 \times 6 \times 6-$ their (a)(i) |
| M1 for $6 \times 6 \times 15$ oe |
| M1 for $2 \times \pi \times 3^{2}$ and M1 (independent) for $\pi \times 6 \times 12$ and M1 for $\pi \times 3^{2}$, |
| M1 (dependent on M3) for adding. |
| (99π implies M4) |
| ft their $(\mathbf{b})(\mathbf{i}) \times 0.01125$ |
| M1 for their (b)(i) $\div 8$ and \times figs 9 |
| implied by figs 3496 to 350 |

\hline
\end{tabular}

Question 7

6 (a)	23.6 (23.60...)	2	M1 for $14^{2}+19^{2}$
(b)	2300 or 2303 to 2304 cao	4	M3 for $2 \times 1 / 2 \times 14 \times 19+14 \times 36+19 \times 36+$ their $B C \times 36$ M2 for 4 of these added M1 for $1 / 2 \times 14 \times 19$
(c)	4788 or 4790 cao	2	M1 their triangle area $\times 36$
(d)	$43(.0)$ or 43.04 to 43.05 cao	2	M1 for (their (a) $)^{2}+36^{2}$ or $36^{2}+19^{2}+14^{2}$
(e)	18.9° to 19.02° cao	3	M2 for inv $\sin \left(\frac{14}{\text { their } C E}\right)$ or $\operatorname{inv} \tan \left(\frac{14}{\sqrt{19^{2}+36^{2}}}\right)$ or
			$\operatorname{inv} \cos \left(\frac{\sqrt{19^{2}+36^{2}}}{\text { their } C E}\right)$ or complete longer methods (M1 for clearly identifying angle $C E A$)

Question 8

Question 9

4	(a) (i) $2.7 \times \frac{20}{12}$ oe $=4.5$ (ii) $1 / 3 \pi \times 4.5^{2} \times 20-1 / 3 \pi \times 2.7^{2} \times 12$ or $\left(1-(3 / 5)^{3}\right) \times 1 / 3 \pi \times 4.5^{2} \times 20$ oe 332.3 to 332.6 or 332 or 333 (b) (i) $8^{2}+(4.5-2.7)^{2}$ oe sq root 8.2 (ii) 185 or 186 or 185.5 or 185.45 to 185.51	E2 M3 A1 M1 M1 E1 5	M1 for ($\mathrm{SF}=$) 20/12 or 12/20 (but not from 2.7/4.5 or $4.5 / 2.7$) M1 for $1 / 3 \pi \times 4.5^{2} \times 20(424 \ldots$ or $135 \pi)$ and M1 for $1 / 3 \pi \times 2.7^{2} \times 12(91.6$..or 29.16π) e.g. Alt: $20^{2}+4.5^{2}$ and $12^{2}+2.7^{2}$ Dep on 1st M1 Alt: 20.5-12.3 Other complete correct methods are M2 No errors seen M4 for $\pi \times 4.5 \times 20.5-\pi \times 2.7 \times 12.3$ or other complete correct method or M3 for $\pi \times 4.5 \times 20.5$ or $\pi \times 2.7 \times 12.3$ (290 or 92.25π) ($104.3 \ldots$ or 33.21π) or B2 for (slant height of large cone $=$) 20.5 or (slant height of removed cone $=$) 12.3 or M1 for $\sqrt{4.5^{2}+20^{2}}$ or $\sqrt{2.7^{2}+12^{2}}$ or $12 / 8 \times 8.2$ oe or $20 / 8 \times 8.2$ oe

Question 10

4	(a) (i) 28 cao (ii) 420 (b) $\quad\left(r^{3}=\right) \frac{3 \times 1080}{4 \pi}$ oe $(r=) \sqrt[3]{\frac{3 \times 1080}{4 \pi}}$ oe 6.36 or 6.37 www (c) (i) 24 (ii) 232 (231.6 to 232.2)	2 2ft M1 M1dep A1 B1 3	M1 for $\frac{350 \times 16}{200}$ oe or $350 \div 12.5$ oe or 1.75×16 oe ft for their 28×15 M1 for their $28 \times \frac{240}{16}$ or $\frac{350 \times 240}{200}$ oe or 1.75×240 oe Correct rearrangement soi by 257 to 258 Dependent on previous M1 6.364 to 6.366 M1 for $\pi \times 2.5^{2} \times 1.8$ (soi by 35.3 to 35.4) or area $=20 \times 30-$ their $24 \times \pi \times 2.5^{2}$ (soi by 128.7 to 129) and M1dep for $1080-\left(\pi \times 2.5^{2} \times 1.8\right) \times$ their 24 or their area $\times 1.8$

Question 11

6	(a) (i) $141(141.3$ to 141.4$)$ (ii) $8.93(8.93 \ldots)$ (b) (i) 2.98 or 2.976 to 2.977 (ii) Answer rounds to 15.7 (c) 535 or 536 (534.9 to 535.8)	2 3 $2 f t$ $2 f t$	M1 for $\pi \times 4.5 \times 10$ M2 for $\sqrt{10^{2}-4.5^{2}}$ or M1 for $h^{2}+4.5^{2}=10^{2}$ implied by 79.75 ft their (a)(ii) $\div 3$ www correct to 3 sf or better M1 for their (a)(ii) $\div 3$ ft their (a)(i) $\div 9$ correct to 3 sf or better or $\pi \times 1.5 \times \sqrt{\text { their } 2.98^{2}+1.5^{2}}$ M1 for their (a)(i) $\div 9$ or $\pi \times 1.5 \times 10 \div 3$ oe or $\pi \times 1.5 \times \sqrt{\text { their } 2.98^{2}+1.5^{2}}$ M1 for area of one circle $\pi \times 1.5^{2}$ or $\pi \times 4.5^{2}$ (7.0685 or 63.617) and M1 for their (a)(i) - their (b)(ii) (large cone SA - small cone SA) ($141-15.7$) (= 125.3 to 125.7) and M1 for $12 \times \pi \times 9$ (curved area of cylinder) (339.292..) and M1 for correct collection of 4 areas

Question 12

1	(a) 1 min 36 s www (b) 0.954 to 0.956 www (c) 8.09 to 8.10 www	3 3 4	M1 for $1.2 \times 0.8 \times 0.5(=0.48)$ A1 1.6 or 96 If $\mathbf{A 0}, \mathbf{B 1}$ for correctly converting to min and sec Dep on M1 M2 for $\frac{\text { their } 0.48}{\pi \times 0.4^{2}}$ or M1 for $\pi \times 0.4^{2} \times d=` .48$ ' M1 for $\pi \times 0.4^{2}(0.503)$ condone $\times 2$ and M1 for $\pi \times 0.8 \times 1.2$ (3.02) M1 for their area $\times 2.3(\operatorname{dep} \mathbf{M 1}$ M1)
Question 13			
6	(a) (i) 13 or 13.0 www (ii) 13.32 to 13.35 or 13.3 (b) (i) 36.86 to 36.87 or 36.9 (ii) 2.770 to 2.774 or 2.77	3 2 2	M1 for $3^{2}+4^{2}$ oe Equiv if find $A C$ first and M1 for $\sqrt{12^{2}+\text { their }\left(3^{2}+4^{2}\right)}$ M1 for $\sin =\frac{3}{\text { their } A P}$ or $\tan =\frac{3}{\text { their } A C}$ oe M1 for $\tan (P B C)=\frac{3}{4}$ oe M2 for $\frac{4 \sin \text { their }(\mathbf{b})(\mathbf{i})}{\sin 120}$ or M1 for correct implicit eqn

Question 14

10 (a)	2030 or 2040 or 2034 to 2036. (...)	2	$(V=) \frac{1}{3} \times \pi \times 9^{2} \times 24$
(b)			Accept 648π for 2 marks if final answer
	(upper radius =) 3	B1	accept $9 \times \frac{8}{24}$ oe
	(vol cut off $=$) $\frac{1}{3} \times \pi \times$ their $3^{2} \times 8$	M1	(=75.36 to 75.41) their r must be less than 9
	their (a) - their 75.39	$\begin{aligned} & \text { M1 } \\ & \text { dep } \end{aligned}$	[alternate method M1 for ratio sides 1:3 M1 ratio vols 1:27 M1 their $($ a $) \times 26 \div 27$] 624π implies B1 M2 or M3
	1958 to 1964.(...)	E1	must see a figure after decimal point if 1960
(c)	$1960=5 \times \pi \times r^{2} \times 15$ soi	M1	
	$r^{2}=1960 \div \pi \div 15 \div 5$	M1	implied by 8.318...
	$\sqrt{ }$ their 8.318	M1	dep on M1 M1
	2.88 to 2.89	E1	SC2 for $5 \times \pi \times 2.9^{2} \times 15=1980$ to 1982

Question 15

5 (a) (i)	980 (979.6 to 980.3...) www 4	4	M3 for $\left(\pi \times 8^{2} \times 6\right)-\left(2 \times \frac{4}{3} \times \pi \times 3^{3}\right)$ Or M1 for $\pi \times 8^{2} \times 6$ and M1 for $[2 \times] \frac{4}{3} \times \pi \times 3^{3}$
(ii)	0.98[0] (0.9796 to 0.9803...)	1ft	ft their (i) $\div 1000$ but not in terms of π
(b)	$1.2[0]$ (1.195 to 1.196)	2ft	ft their (a)(i) $\times 1.22 \div 1000$ or their (a)(ii) $\times 1.22$ SC1ft for figs 12[0] or 1195 to 1196 Apply ft to SC
(c)	$4.88 \text { or } 4.87 \text { (4.871 to } 4.878 . .)$ www 2	2 ft	ft their (a)(i) $\div \pi 8^{2}$ provided their (a)(i) is not 384π or 1206... M1 for their (a)(i) $\div \pi 8^{2}$

Question 16

5	(a) (b) (c)	55.6 to 55.61 www 90.6 or 90.57 to 90.58 25.19 to $25.21,30.23$ to 30.246 or $30.2,57.95$ to 57.97 or $58[.0]$ 16.8 to 16.842	3 3 3	M2 for $\sqrt{46^{2}+24^{2}+20^{2}}$ oe $\lfloor\sqrt{3092}\rfloor$ or M1 for $46^{2}+24^{2}$ oe [soi by 2692 or art 51.9] or $46^{2}+20^{2}$ oe [soi by 2516 or art 50.2] or $24^{2}+20^{2}$ oe [soi by 976 or art 31.2] M2 for $\frac{20000}{(20 \times 24 \times 46)} \times 100$ oe or M1 for $20 \times 24 \times 46$ [22080] M2 for $20 \times \sqrt[3]{2}$ or $24 \times \sqrt[3]{2}$ or $46 \times \sqrt[3]{2}$ M1 for $\sqrt[3]{2}$ oe seen [1.259 to 1.261] M2 for $\sqrt[3]{\frac{20000}{4 / 3 \pi}}$ oe or answer figs 168 to 16842 or M1 for $\sqrt[3]{\frac{20000}{4 / 3 \pi}}$ [4770-4780] seen

Question 17

| 8 | (a) $\begin{array}{l}2 x+7 \text { final answer } \\ x+9 \text { final answer }\end{array}$ |
| :--- | :--- | :--- |

(b) $2(2 x+3)(x+5)$ at any stage $2 x^{2}+3 x+10 x+15$ or better $4 x^{2}+26 x+30$
(c) (i) $4 x^{2}+26 x-45[=0]$ soi

$$
\frac{-26 \pm \sqrt{(26)^{2}-4(4)(-45)}}{2(4)}
$$

$-7.92,1.42$ final answers
(ii) $6.42[0 \ldots]$

2 B1 for each, accept in either order
After 0 scored allow SC1 mark for both correct but unsimplified
M1 The $\times 2$ could be embedded within one of the brackets e.g. $(4 x+6)(x+5)$
B1 Expands brackets correctly
E1 No errors seen and two previous stages shown
B1

B1 ft ft their $4 x^{2}+26 x \pm k[k \neq 0]$ oe
B1 ft
In square root $\mathbf{B 1} \mathbf{f t}$ for $(26)^{2}-4(4)(-45)$ or better (1396)

If in form $\frac{p+\sqrt{q}}{r}$ or $; \frac{p-\sqrt{q}}{r}$
B1 ft for -26 and 2(4) or better
B1 B1 If B0, SC1 for -7.9 and 1.4 or both answers $-7.920 \ldots ., 1.420 \ldots$.
or for- $7.92,1.42$ seen
$1 \mathbf{f t} \mathrm{ft}$ their greatest positive root
If their $x \leq 2$ then $\mathrm{ft} x+5$
If their $x>2$ then $\mathrm{ft} 2 x+3$

Question 18

\begin{tabular}{|c|c|c|c|}
\hline 3 \& \begin{tabular}{l}
(a) \(7.407 \ldots\) or 7.41 \\
(b) 9 \\
(c) (i) 6.36 to 6.37 www \\
(ii) 508 to 510 \\
(d) \(\sqrt{2}\) or \(1.41[1.414 \ldots] \mathrm{www}\)
\end{tabular} \& 1
2
3

2 \& | M1 for $1080 \div(12 \times 10)$ oe |
| :--- |
| M2 for $\sqrt[3]{\frac{1080}{\frac{4}{3} \pi}}$ oe |
| or M1 for $\frac{1080}{\frac{4}{3} \pi}$ oe [257.7 to 258.7] |
| Accept 4.18 to 4.19 for $4 / 3 \pi$ |
| M1 for $4 \times \pi \times(\text { their }(\mathbf{c})(\mathbf{i}))^{2}$ |
| Allow over 1 or $\sqrt{2}: 1$ etc |
| M1 for $(R / r)^{2}=2$ oe |
| or $\left[R^{2}=\right](2 \times$ their $(\mathbf{c})(i i)) / 4 \pi \mathbf{o r}$ |
| $\left[R^{2}=\right] 2 \times(\text { their }(\mathbf{c})(\mathbf{i}))^{2}$ |

\hline
\end{tabular}

Question 19

(a) (b) (i) (ii)	371 or 371.1... 1740 or 1743.6 to 1744.2 87 cao www 5	4 4 4 5	M3 for $(6 \times 4 \times 12)+(2 \times 6 \times 0.5 \times 4 \times 4 \times \sin 60)$ oe or M2 for area of 1 or 2 hexagons or M1 for area of one relevant triangle or trapezium or rectangle within hexagon If $\mathbf{0}$ scored SC1 for 288 shown M3 for $\frac{12000}{4} \div\left(\pi \times 0.74^{2}\right)$ oe or SC2 for figs 174[3..] or 174[4..] or B1 for $\pi \times 0.74^{2}$ seen [1.72..] or B1 for 12000 / 4 soi by 3000 B4 for 87.39 to 87.43 or M3 for $[r=] \sqrt{\frac{\text { figs } 12}{\pi \times \text { figs } 5}}$ oe or M2 for $\left[r^{2}=\right]=\frac{\text { figs } 12}{\pi \text { figs } 5}$ oe or M1 for figs $12=\pi r^{2} \times$ figs 5

Question 20

4	(a)	3080
	(b)	46.2 or 46.18 to 46.2 www
	(c)	8.7 or 8.7 to 8.72 www
	(d)	217
	(e)	25.13875 final answer

Question 21

Question 22

4	(a) (i) $90 \div\left(42 / 360 \times \pi \times 8^{2}\right)$ o.e. 3.836 to 3.837 (ii) 131 or 130.75 to 130.9 nfww (b) 2.42 or 2.416 to 2.419	M3 A1 5 3	M2 for $42 / 360 \times \pi \times 8^{2} \times h=90$ or M1 for $42 / 360 \times \pi \times 8^{2}$ M2 for $42 / 360 \times \pi \times 2 \times 8 \times 3.84$ oe [22.48 to 22.53] or M1 for $42 / 360 \times \pi \times 2 \times 8$ oe soi [5.86 to 5.87] and M1 for $2 \times(8 \times 3.84)$ [61.37 to 61.44] and M1 for $2 \times\left(42 / 360 \times \pi \times 8^{2}\right)$ [46.88 to 47] M2 for $3.84 \times \sqrt[3]{\frac{22.5}{90}}$ oe or $h=\sqrt[3]{\frac{3.84^{3} \times 22.5}{90}}$ or M1 for $\sqrt[3]{\frac{22.5}{90}}$ oe or $\sqrt[3]{\frac{90}{22.5}}$ oe seen or $\frac{3.84^{3}}{h^{3}}=\frac{90}{22.5}$ oe

Question 23

3

(a)	$9-2 x, 7-2 x$ oe
(b)	$\begin{array}{l}x(9-2 x)(7-2 x) \\ 4 x^{3}-32 x^{2}+63 x\end{array}$

$\mathbf{2}$	B1 for each, accept in any order
M1FT	
A1	Correct expansion and simplification with no errors

Question 24

6 (a) (b) (c)	329.7 to 330 2970 or 2967 to 2969.[...] 11.5 or 11.6 or 11.53 to 11.55	3 4 3FT	M2 for $1 / 2 \pi\left(12^{2}+8.75^{2}-3.25^{2}\right)$ oe or M1 for $1 / 2 \pi 12^{2}$ or $1 / 2 \pi 8.75^{2}$ or $1 / 2 \pi 3.25^{2}$ SC2 for answer 1318 to 1320 M3 for $1 / 2 \pi(24+17.5+6.5) \times 35+$ their (\mathbf{a}) or M2 for $1 / 2 \pi(24+17.5+6.5) \times 35$ or M1 for $1 / 2 \pi \times 24$ or $1 / 2 \pi \times 17.5$ or $1 / 2 \pi \times 6.5$ SC3 for 3955 to 3960 dep on SC2 in (a) M1 for their $\mathbf{(a)} \times 35$ A1 for 11500 or 11530 to 11550
(d) (i) (ii)	$\frac{r}{h}=\frac{20}{40} \quad \text { or } \quad \frac{r}{20}=\frac{h}{40}$ 35.3 or 35.31 to 35.34	1 3	Accept $20: 40=r: h$ leading to $40 r=20 h \quad[r=h / 2]$ $\frac{20}{40}=\frac{1}{2}$ and $\frac{r}{h}=\frac{1}{2}$ M2 for $\sqrt[3]{\frac{\text { their } 11545 \times 12}{\pi}}$ oe or $2 \times$ their r or M1 for their $11545=\frac{1}{3} \times \pi \times\left(\frac{h}{2}\right)^{2} \times h$ oe or their $11545=\frac{1}{3} \times \pi \times r^{2} \times 2 r$ oe

Question 25

3	(a)	62705	$\mathbf{2}$	M1 for $75246 \div 6$ soi by 12541 or 75246×5
(b)	10.9 or $10.88 \ldots$	$\mathbf{3}$	M2 for $\frac{(150675-135890)}{135890} \times 100$ oe or M1 for correct fraction soi by $0.1088 \ldots$ or $\frac{150675}{135890} \times 100$ soi by $110.88 \ldots$	

(c)	127000	3	M2 for $135890 \div 1.07$ oe or M1 for 135890 associated with 107%
(d) (i)	59112 to 59113 or 59100 or 59110 or 59119 to 59120 or 59100 nfww	3	M2 for $\pi \times 21 \times\left(30^{2}-2^{2}\right)$ oe Or M1 for $\pi \times 21 \times 30^{2}$ or $\pi \times 21 \times 2^{2}$
(ii)	(a) 0.0125	1	
	(b) 7580 or 7582 or 7581 or 7583 nfww	4	M1 for $21 \times 29.7 \times$ their 0.0125 [$=7.796$ or $7.8[0]]$ and M1 for their $\mathbf{(d)} \mathbf{(i)} \div(21 \times 29.7 \times$ their 0.0125$)$ A1 for 7580 to 7583.2 (non integer)
			If 0 then $\mathbf{S C} 1$ for their $\mathbf{(d)}$ (i) $\div(21 \times 29.7 \times 0.125)$

Question 26

5	(a) (i) (ii) (b)	2412 to $2413 \ldots$. 2.41[0] 1 min 24 s 14	B2 B1 4 4 	Must be at least 4 figures shown M1 for $\pi \times 8^{2} \times 12$ oe B3 for 83.76 to $83.8[0]$ or 84 or 1.396 to 1.397 or 1.4 or 1 min 23.76 to 1 min 23.8 seen or M2 for $\frac{1}{3} \pi \times 4^{2} \times 10 \div 2[80 / 3 \pi]$ or M1 for $\frac{1}{3} \pi \times 4^{2} \times 10[160 / 3 \pi$ or 167.5 to 167.6] M1 for $\frac{2410}{\frac{1}{3} \pi \times 4^{2} \times 10}$ or $\frac{2410}{\text { their cone vol from part }(b)}$ A1 for 14.3 to $14.4 \ldots$.

Question 27

\begin{tabular}{|c|c|c|c|c|}
\hline 10 \& \begin{tabular}{l}
(a) \\
(b) \\
(c) (i) \\
(ii) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
\[
[r=] 2.30[9 \ldots]
\] \\
333 or 332.5 to 332.6 \\
30 \\
6.65 or 6.647 to \(6.648[\) [..] \\
40 [.0] or 40.1 or 40.0 to 40.2 nfww
\end{tabular} \& 3
4
4

3
2

2 \& | B2 for $[\mathrm{r}=] 2.31$ |
| :--- |
| or M2 for $4 \tan 30$ |
| or M1 for $\frac{r}{4}=\tan 30$ |
| M3 for $0.5 \times 8 \times 8 \times \sin 60 \times 12$ oe or M2 for $0.5 \times 8 \times 8 \times \sin 60$ oe or M1 for their triangle area $\times 12$ shown dep on ' $\frac{1}{2}$ 'used within their area of triangle method |
| M2 for $12 \div 0.4$ or $120 \div 4$ or SC1 for figs 3 |
| M1 for $\pi \times 2.3^{2} \times 0.4$ |
| or SC1 for $\pi \times 2.3^{2} \times 4$ soi by 66.5 or 66.47 to $66.48[\ldots]$ $\begin{aligned} & \text { M2 for } 100-\frac{\text { their }(c)(i) \times \text { their }(c)(i i)}{\text { their }(b)} \times 100 \\ & \text { or } \frac{\text { their }(b)-\text { their }(c)(i) \times \operatorname{their}(c)(i i)}{\text { their }(b)} \times 100 \end{aligned}$ |
| or M1 for $\frac{\text { their }(c)(i) \times \text { their }(c)(i i)}{\text { their }(b)} \times 100$ or $\frac{\text { their }(b)-\text { their }(c)(i) \times \text { their }(c)(i i)}{\text { their }(b)}$ |

\hline
\end{tabular}

Question 28

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
\(7 \quad\) (a) (i) \\
(b) (i) \\
(ii)
\end{tabular} \& \[
\begin{aligned}
\& 120 \times 55 \times 75[=495000] \\
\& \div 1000[=495] \\
\& \text { or } 495[1] \times 1000=495000[\mathrm{ml}] \\
\& 11 \\
\& 37.5 \text { or } 37.50 \text { to } 37.51
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
2 \\
3
\end{tabular} \& \begin{tabular}{l}
M1 for \(495000 \div 750[\div 60]\) oe [660] After 0 scored, SC1 for answer figs 11 \\
M2 for \(\sqrt{\frac{\text { figs } 495}{112 \pi}}\) oe \\
or M1 for \(\left[112 r^{2}=\right] \frac{\text { figs } 495}{\pi}\) or \(\left[\pi r^{2}=\right] \frac{\text { figs } 495}{112}\) or better
\end{tabular} \\
\hline \begin{tabular}{l}
(c) \\
(d)
\end{tabular} \& 15
\[
24.4[4 . .] \text { to } 24.45
\] \& 4

3 \& | B3 for answer 60 or M3 for $75-\sqrt{145^{2}-\left(55^{2}+120^{2}\right)}$ oe M2 for $\sqrt{145^{2}-\left(55^{2}+120^{2}\right)}$ oe or M1 for $\sqrt{55^{2}+120^{2}}$ |
| :--- |
| M2 for $\cos ^{-1}\left(\sqrt{55^{2}+120^{2}} / 145\right)$ oe, e.g. or $\sin ^{-1}(75-$ their $(\mathbf{c})) / 145$ or $\tan ^{-1}\left((75-\operatorname{their}(\mathbf{c})) / \sqrt{55^{2}+120^{2}}\right)$ or M1 for $\cos =\sqrt{55^{2}+120^{2}} / 145 \mathrm{oe}$ or $\sin =(75-$ their $(\mathbf{c})) / 145$ or $\tan =(75-$ their $(\mathrm{c})) / \sqrt{55^{2}+120^{2}}$ |

\hline
\end{tabular}

Question 29

Question 30

8	(a)	28.3 or $28.29 \ldots$	2	M1 for $180000 \div\left(\pi \times 45^{2}\right)$
	(b) (i)	360000	3	M2 for $\frac{1}{2}(70+50) \times 40 \times 150$ oe
				or M1 for $\frac{1}{2}(70+50) \times 40$ oe
				or their area of $A B C D \times 150$ dependent on their area being two dimensional
	(ii)	360	1FT	FT their (b)(i) $\div 1000$
	(c)	3 h 20 min	3	M2 for $180000 \div 15 \div 60$ (implied by 200) or M1 for $180000 \div 15$ (implied by 12000) or correct conversion of their seconds into h and min
	(d) (i)	$\frac{h}{40}=\frac{\frac{1}{2}(x-50)}{10} \mathrm{oe}$	M1	i.e. a correct statement from similar figures which must contain h, x and numbers
		$h=2(x-50)$	A1	Answer established with at least one more step and no errors or omissions
	(ii)	$\frac{1}{2}(x+50) 2(x-50)$	M1	
	(iii)	60.8 or 60.82 to 60.83	2	M1 for $\left(x^{2}-2500\right) \times 150=180000$ or better
	(iv)	21.7 or 21.65 to 21.66	1FT	FT for 2(their (d)(iii) - 50) evaluated only if $x>50$

Question 31

3 (a)	43200	3	M2 for $0.5 \times(35+25) \times 12 \times 120$ oe or M1 for $0.5 \times(35+25) \times 12$ oe
(b) (i)	$0.5 \times(25+30) \times 6 \times 120[=19800]$	M2	Dep on a valid method for obtaining the width of 30 cm B1 for $0.5 \times(25+35)$ oe
(ii)	45.8 or 45.83...	1FT	$\text { FT for } \frac{19800}{\text { their }(\mathbf{a})} \times 100$
(c)	$1 \mathrm{hr} \mathrm{39min}$	4	B3 for $1.65[\mathrm{~h}]$ or 99 mins or $\frac{33}{20}$ or M2 for $\frac{19800}{12 \times 1000}$ oe or M1 for $\frac{19800}{12}$ or $\frac{19800}{1000}$ or 12×1000
			If zero scored then SC1 for figs 165 and B1 for converting their time (in hours) into hours and minutes
(d)	12.8 or 12.80 to 12.81	3	M2 for $\sqrt[3]{\frac{19800}{3 \pi}}$ or M1 for $\pi r^{2} 3 r=19800$
(e)	21[.0]	2	$\text { M1 for } \frac{19800}{1000}+1.2$

Question 32

8 (a) (i) (ii) (b)	47.7 or 47.74 to 47.75 252 or 252.3 to $252.4 \ldots$.... 139 or 139.3 to $139.4 \ldots$ nfww	 6 6 5	M1 for [arc =] $68-2 \times 24$ or $24+24+\frac{x}{360} \times 2 \pi \times 24=68$ M1 for [$x=$] their arc $\times 360 \div(2 \times \pi \times 24)$ M1 for $r=\frac{20}{2 \pi}$ or $\left(\frac{\text { their } 47.7}{360} \times 2 \times \pi \times 24\right) \div(2 \pi)$ A1 for $r=3.18$ or 3.182 to $3.183 \ldots$ or $\frac{10}{\pi}$ M1 for $h^{2}=24^{2}$-their r^{2} A1 for $h=23.8$ or $23.78 \ldots$ to 23.79 M1dep on M1 earned for $V=\frac{1}{3} \pi \times$ their $h \times$ their r^{2} M4 for $8^{2}+\frac{1}{4} \pi \times 8^{2}+\frac{1}{2} \pi \times\left(\frac{8}{2}\right)^{2}$ or M1 for $\frac{1}{4} \pi \times 8^{2}$ and M1 for $\frac{1}{2} \pi \times\left(\frac{8}{2}\right)^{2}$ and M1 for 8^{2} added to at least one term with π

Question 33

10 (a) (b) (i) (ii)	5.2[0] or 5.196... 7.2[0] or 7.196... 62.4 or $62.35 \ldots$	$\begin{gathered} 1 \mathrm{FT} \\ 5 \end{gathered}$	M2 for $\left[h^{2}=\right] 6^{2}-3^{2}$ or better or M1 for $h^{2}+3^{2}=6^{2}$ or B1 for $P R$ (or $P Q$ or $Q R$) $=6$ FT their (a) +2 M4 for $12 \times 6 \times 1 / 2 \tan 60$ oe or M3 for $6 \times 1 / 2 \tan 60$ oe or M2 for realising that $1 / 2$ base $=1 \times \tan 60$ oe or B1 for angle 30 or 60 in correct position on diagram or in a calculation If $\mathbf{0}$ scored, $\mathbf{S C 1}$ for volume $=$ an area $\times 12$ seen

Question 34

4 (a) (b) (i)	14137 to 14137.2 or 14139 104000 or 103600 to 103700	2	M1 for $\frac{4}{3} \times \pi \times 15^{3}$ M2 for $\pi \times 25^{2} \times 60-14140$ or M1 for $\pi \times 25^{2} \times 60$
(ii) (c) (i) (ii)	52.8 or 52.75 to $52.81 \ldots$ 15.8 or $15.81 \ldots$. 3580 or 3576 to 3581 nfww	4	M1 for their (b)(i) $\div\left(\pi \times 25^{2}\right)$ or $14140 \div\left(\pi \times 25^{2}\right)$ M2 for $\left[r^{2}=\right] \frac{14140}{1 / 3 \times \pi \times 54}$ or M1 for $\frac{1}{3} \times \pi \times r^{2} \times 54=14140$ oe M1 for $(\text { their }(\mathrm{c})(\mathrm{i}))^{2}+54^{2}$ M1 for $\pi \times($ their $(\mathrm{c})(\mathrm{i})) \times \sqrt{ }\left\{(\text { their }(\mathrm{c})(\mathrm{i}))^{2}+54^{2}\right\}$ M1 for $\pi \times(\text { their }(\mathrm{c})(\mathrm{i}))^{2}$

Question 35

$6 \quad$ (a)

	3	
(i)	9900	
(ii)	0.99 oe	

$\mathbf{1}$	
$\mathbf{3}$	$\mathbf{1}$
$\mathbf{1 F T}$	F

M2 for $2(60 \times 35)+2(60 \times 30)+2(30 \times 35)$ oe
or M1 for one correct rectangle
FT their(b)(i) $\div 10000$

(c) (i)	75.7 or 75.66 to 75.67	4	M3 for $\sqrt{60^{2}+30^{2}+35^{2}}$ oe could be in stages or M2 for $60^{2}+30^{2}+35^{2}$ oe or M1 for $60^{2}+30^{2}$ or $60^{2}+35^{2}$ or $35^{2}+30^{2}$ oe
(ii)	23.4 or 23.3 or 23.34 to $23.36 \ldots$	3	M2 for $\sin ^{-1}\left(30 \div \sqrt{60^{2}+35^{2}+30^{2}}\right)$ oe or for $\sin ^{-1}(30 \div$ their $(\mathrm{c})(\mathrm{i}))$ or M1 for $\sin =30 \div \sqrt{60^{2}+35^{2}+30^{2}}$ oe or for $\sin =30 \div$ their $(\mathrm{c})(\mathrm{i})$
(d) (i)	$30 \times 35 \times 60[=63000]$	$\mathbf{1}$	With no errors seen
(ii)	22.4 or 22.38 to 22.391	M2 for $\sqrt{\frac{63000}{40 \pi} \text { oe }}$or M1 for $40 \pi r^{2}=63000$ oe	

Question 36

Question 37

5(a)(i)	50890 or 50893 to 50900.4	2	M1 for $\pi \times 18^{2} \times 50$
5(a)(ii)	20.5 or 20.52 to 20.534	3	B2 for answer 29.5 or 29.46 to 29.48 OR M2 for $(50900-30000) \div\left(\pi \times 18^{2}\right)$ oe or M1 for (figs $50.9-$ figs 30$) \div\left(\pi \times\right.$ figs $\left.18^{2}\right)$ or M1 for $(50900-30000)=\left(\pi \times 18^{2}\right) h$ oe OR alternative method M2 for $50-\frac{30000}{\pi \times 18^{2}}$ oe M1 for figs $30=\pi \times$ figs $18^{2} \times(50-h)$ oe or for $\frac{\text { figs } 30}{\pi \times \text { figs } 18^{2}}$ oe OR alternative method M2 for $\frac{(50.9-30)}{50.9} \times 50$ oe or M1 for $\frac{(50.9-30)}{50.9}$ or $\frac{30}{50.9} \times 50$ oe or M1 for $\frac{(\text { figs } 50.9-\text { figs } 30)}{\text { figs } 50.9} \times 50 \text { oe }$
5(a)(iii)	334 nfww	4	M2 for figs $30 \div \frac{2}{3} \pi \times 3.5^{3}$ oe or M1 for $\frac{1}{2} \times \frac{4}{3} \pi \times 3.5^{3}$ oe and B1 for 30000
5(b)(i)	3.28 [6..] or 3.29	3	M2 for $\left[r^{2}=\right] \frac{95 \times 3}{8.4 \pi}$ oe or M1 for $\frac{1}{3} \pi \times r^{2} \times 8.4[=95]$
5(b)(ii)	93.1 to 93.6	4	M3 for $\pi \times 3.3 \times \sqrt{3.3^{2}+8.4^{2}}$ or M2 for $\sqrt{3.3^{2}+8.4^{2}}$ or M1 for $3.3^{2}+8.4^{2}$

Question 38

8(a)	$\begin{aligned} & \pi \times \frac{5}{2} \times l+\frac{4}{2} \times \pi \times\left(\frac{5}{2}\right)^{2}=\frac{115 \pi}{4} \text { oe } \\ & \text { or } \frac{115 \pi}{4}-\frac{4}{2} \times \pi \times\left(\frac{5}{2}\right)^{2}=\pi \times \frac{5}{2} \times l \mathrm{oe} \end{aligned}$	M2	M1 for $\pi \times \frac{5}{2} \times l$ or $\frac{4}{2} \times \pi \times\left(\frac{5}{2}\right)^{2}$
	$\begin{aligned} & \frac{5 \pi l}{2}=\frac{65 \pi}{4} \mathrm{oe} \\ & \text { or }[l=]\left(\frac{115 \pi}{4}-2 \times \pi \times 2.5^{2}\right) \div 2.5 \pi \mathrm{oe} \end{aligned}$	B1	nfww oe both terms must be written in terms of π nfww or correct complete method for l with decimals
	$[l=] \frac{65 \pi \times 2}{4 \times 5 \pi}$ or $\frac{65 \pi}{10 \pi}$ oe $=6.5$	A1	Correct calculation with no errors and B1 earned
8(b)	6	3	M2 for $\sqrt{6.5^{2}-2.5^{2}}$ or M1 for $h^{2}+2.5^{2}=6.5^{2}$ If zero scored, SC2dep for answer 4.15[3]...
8(c)	$72[.0 \ldots]$ or $71.99 \ldots \mathrm{nfww}$	4	M3 for $\frac{\pi}{3} \times\left(\frac{5}{2}\right)^{2} \times$ their $6+\frac{1}{2} \times \frac{4 \pi}{3} \times\left(\frac{5}{2}\right)^{3}$ oe or M1 for $\frac{\pi}{3} \times\left(\frac{5}{2}\right)^{2} \times$ their 6 oe and M1 for $\frac{1}{2} \times \frac{4 \pi}{3} \times\left(\frac{5}{2}\right)^{3}$ oe If zero scored, SC3dep for $\frac{\pi}{3} \times(5)^{2} \times$ their $4.15+\frac{1}{2} \times \frac{4 \pi}{3} \times(5)^{3}$ oe or SC1dep for $\frac{\pi}{3} \times(5)^{2} \times$ their 4.15 oe SC1dep for $\frac{1}{2} \times \frac{4 \pi}{3} \times(5)^{3}$ oe
8(d)	53.7 or 53.65 to 53.67	3	M1 for figs $($ their $(\mathbf{c})) \times 19.3 \times 38.62$ or better M1 for $\div 1000$ soi

Question 39

6(a)	4.79 or 4.788 to 4.789	3	M2 for $\sqrt[3]{\frac{230 \times 3}{2 \times \pi}}$ oe or M1 for $230=\frac{2}{3} \times \pi \times r^{3}$ oe If 0 scored $\mathbf{S C 1}$ for answer $3.8[0 \ldots]$
6(b)(i)	8.7 [0] or 8.702 to 8.704	3	M2 for $(300-230) \div\left(1.6^{2} \pi\right)$ or M1 for $\pi \times 1.6^{2} \times h$
6(b)(ii)	6.4	3	M2 for $1.6 \times \sqrt[3]{\frac{19200}{300}}$ oe or M1 for sf $\sqrt[3]{\frac{19200}{300}}$ or $\sqrt[3]{\frac{300}{19200}}$ oe or for $\left(\frac{1.6}{r}\right)^{3}=\frac{300}{19200}$

Question 40

8(a)(ii)	30	3	M2 for $320 \div 16 \times \frac{12}{8}$ oe or M1 for $320 \div 16$
8(b)	3.375 cao	3	M2 for $\frac{\frac{4}{3} \pi \times 4.5^{3}}{\pi \times 6^{2}}$ or better or M1 for $\pi \times 6^{2} \times h=\frac{4}{3} \times \pi \times 4.5^{3}$
8(c)	3.63 or 3.627 to 3.628	3	$\begin{aligned} & \text { M2 for } \frac{20^{3}}{40 \times \frac{4}{3} \pi} \\ & \text { or M1 for } 40 \times \frac{4}{3} \times \pi \times r^{3}=20^{3} \end{aligned}$
8(d)	$\frac{3 x}{2} \text { or } 1.5 x \text { or } 1 \frac{1}{2} x$	3	B2 for $4 R^{2}=9 x^{2}$ oe or better or M1 for $4 \pi R^{2}=2 \pi x^{2}+\pi \times 2 x \times \frac{7 x}{2}$

