Transformations 2002 - 2011

www.Q8maths.com

Answer(a)(iii) [3]

(b)	Draw the image of		
		1	`

(i) triangle *B* after a translation of
$$\begin{pmatrix} -5\\2 \end{pmatrix}$$
, [2]

(ii) triangle *B* after a transformation by the matrix
$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
. [3]

(c)	Describe fully the single transformation represented by the matrix	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	$\begin{pmatrix} 0\\2 \end{pmatrix}$.	•
-----	---	---------------------------------------	--	---

Answer(c)	
	[3]

Triangles *T* and *A* are drawn on the grid above.

	Ans	wer(a)	[2]
(b)	(i)	Draw the image of triangle T after a rotation of 90° anticlockwise about the point (0,0).	
		Label the image <i>B</i> .	[2]
	(ii)	Draw the image of triangle T after a reflection in the line $x + y = 0$.	
		Label the image C.	[2]
	(iii)	Draw the image of triangle T after an enlargement with centre (4, 5) and scale factor 1.5.	
		Label the image D.	[2]

(a) Describe fully the single transformation that maps triangle *T* onto triangle *A*.

(c) (i) Triangle T has its vertices at co-ordinates (2, 1), (6, 1) and (6, 3).

Transform triangle *T* by the matrix $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

Draw this image on the grid and label it *E*.

	(ii)	Describe fully the single transformation represented by the matrix $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.	[3]
		Answer(c)(ii)	[3]
(d)	Wri	ite down the matrix that transforms triangle <i>B</i> onto triangle <i>T</i> .	

Answer(d)			[2]
	()	

(a) Describe fully a single transformation which maps both

	(i)	A onto C and B onto D ,	[2]
	(ii)	A onto D and B onto C,	[2]
	(iii)	A onto P and B onto Q.	[3]
(b)	Des	cribe fully a single transformation which maps triangle <i>OAB</i> onto triangle <i>JFE</i> .	[2]
(c)	The	matrix M is $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$.	
	(i)	Describe the transformation which M represents.	[2]
	(ii)	Write down the co-ordinates of P after transformation by matrix M .	[2]
(d)	(i)	Write down the matrix R which represents a rotation by 90° anticlockwise about θ .	[2]
	(ii)	Write down the letter representing the new position of F after the transformation $\mathbf{RM}(F)$.	[2]

Draw the shear of the shaded square with the x-axis invariant and the point (0, 2) mapping onto the point (3, 2).

(b) y x

(i) Draw the one-way stretch of the shaded square with the x-axis invariant and the point (0, 2) mapping onto the point (0, 6).

[2]

[2]

(ii) Write down the matrix of this stretch.

Answer (b)(ii)
$$($$
 $)$ [1]

0580/2, 0581/2 Jun 2003

(a) Describe fully the **single** transformation which maps

	(i)	shape A onto shape B ,	[2]
	(ii)	shape B onto shape C,	[2]
	(iii)	shape A onto shape D,	[2]
	(iv)	shape B onto shape E,	[2]
	(v)	shape B onto shape F ,	[2]
	(vi)	shape A onto shape G.	[2]
(b)	A tr	cansformation is represented by the matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.	
	Wh	ich shape above is the image of shape A after this transformation?	[2]
(c)	Fine	1 the 2 by 2 matrix representing the transformation which maps	
	(i)	shape B onto shape D,	[2]
	(ii)	shape A onto shape G.	[2]

	<i>y</i>
 (a) Des (i) (ii) (iii) (iv) (b) Fin (i) (ii) 	Scribe fully the single transformation which maps triangle X onto triangle P, triangle X onto triangle Q, triangle X onto triangle R, triangle X onto triangle S. d the 2 by 2 matrix which represents the transformation that maps triangle X onto triangle Q, triangle X onto triangle Q,

[2] [2] [3] [3]

[2] [2] 7 Transformation T is translation by the vector $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$.

Transformation M is reflection in the line y = x.

(a) The point *A* has co-ordinates (2, 1).

Find the co-ordinates of

(i) T(A), [1]

(ii)
$$MT(A)$$
. [2]

- (b) Find the 2 by 2 matrix **M**, which represents the transformation M. [2]
- (c) Show that, for any value of k, the point Q(k-2, k-3) maps onto a point on the line y = x following the transformation TM(Q). [3]
- (d) Find M^{-1} , the inverse of the matrix M. [2]
- (e) N is the matrix such that $\mathbf{N} + \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 4 \\ 0 & 0 \end{pmatrix}$.
 - (i) Write down the matrix N. [2]
 - (ii) Describe completely the single transformation represented by N. [3]

Answer the whole of this question on a sheet of graph paper.

(a)	Dra	w and label x and y axes from -6 to 6, using a scale of 1 cm to 1 unit.	[1]
(b)	Dra	w triangle ABC with A (2,1), B (3,3) and C (5,1).	[1]
(c)	Dra	w the reflection of triangle <i>ABC</i> in the line $y = x$. Label this $A_1B_1C_1$.	[2]
(d)	Rot	ate triangle $A_1B_1C_1$ about (0,0) through 90° anti-clockwise. Label this $A_2B_2C_2$.	[2]
(e)	Des	cribe fully the single transformation which maps triangle <i>ABC</i> onto triangle $A_2B_2C_2$.	[2]
(f)	A tr	cansformation is represented by the matrix $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$.	
	(i)	Draw the image of triangle <i>ABC</i> under this transformation. Label this $A_3B_3C_{3}$.	[3]
	(ii)	Describe fully the single transformation represented by the matrix $\begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$.	[2]
	(iii)	Find the matrix which represents the transformation that maps triangle $A_3B_3C_3$ onto triangle <i>ABC</i> .	[2]

Write down the letters of all the triangles which are

(a) congruent to the shaded triangle,

Answer(a) [2]

(b) similar, but not congruent, to the shaded triangle.

Answer(b) [2]

(a) On the grid, draw the enlargement of the triangle *T*, centre (0, 0), scale factor $\frac{1}{2}$. [2]

© UCLES 2010

0580/41/M/J/10

(b) The matrix
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
 represents a transformation.

(i) Calculate the matrix product
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 8 & 8 & 2 \\ 4 & 8 & 8 \end{pmatrix}$$
.

	(ii)	On the grid, draw the image of the triangle T under this transformation.	[2]
	(iii)	Describe fully this single transformation.	
		Answer(b)(iii)	[2]
(c)	Des	scribe fully the single transformation which maps	
	(I)	Answer(c)(i)	[2]
	(ii)	triangle T onto triangle Q .	
		Answer(c)(ii)	[3]

(d) Find the 2 by 2 matrix which represents the transformation in **part (c)(ii)**.

Answer(d) $\left(\begin{array}{c} \\ \end{array} \right)$ [2]

- (c) Find the 2 by 2 matrix which represents the transformation that maps
 - (i) triangle T onto triangle U,

(c)	Des	cribe fully the single transformation which maps triangle <i>B</i> onto triangle <i>T</i> .	
		Answer(c)	[2]
(d)	(i)	Describe fully the single transformation which maps triangle <i>T</i> onto triangle <i>P</i> .	
		Answer(d)(i)	[3]
	(ii)	Complete the following statement.	
		Area of triangle $P = $ Area of triangle T	[1]
(e)	(i)	Describe fully the single transformation which maps triangle T onto triangle Q .	
		Answer(e)(i)	[3]
	(ii)	Find the 2 by 2 matrix which represents the transformation mapping triangle T or triangle Q .	onto

Answer(c)(ii)
$$($$
 $)$ [2]

Χ

Answer the whole of this question on a sheet of graph paper.

(a)) Using a scale of 1 cm to represent 1 unit on each axis, draw an x-axis for $-6 \le x \le 10$ and a $y-8 \le y \le 8$.			
	Copy the word EXAM onto your grid so that it is exactly as it is in the diagram above. Mark the point P (6,6).			
(b)	Dra	Draw accurately the following transformations.		
	(i)	Reflect the letter \mathbf{E} in the line $x = 0$.	[2]	
	(ii)	Enlarge the letter X by scale factor 3 about centre $P(6,6)$.	[2]	
	(iii)	Rotate the letter A 90° anticlockwise about the origin.	[2]	
	(iv)	Stretch the letter \mathbf{M} vertically with scale factor 2 and x-axis invariant.	[2]	
(c)	(i)	Mark and label the point Q so that $\overrightarrow{PQ} = \begin{pmatrix} -3\\ 2 \end{pmatrix}$.	[1]	
	(ii)	Calculate $ \overrightarrow{PQ} $ correct to two decimal places.	[2]	
	(iii)	Mark and label the point S so that $\overrightarrow{PS} \begin{pmatrix} -4 \\ -1 \end{pmatrix}$.	[1]	
	(iv)	Mark and label the point R so that $PQRS$ is a parallelogram.	[1]	

Use one of the letters A, B, C, D, E or F to answer the following questions.

- Which triangle is T mapped onto by a translation? Write down the translation vector. [2] (i)
- (ii) Which triangle is T mapped onto by a reflection? Write down the equation of the mirror line. [2]
- (iii) Which triangle is T mapped onto by a rotation? Write down the coordinates of the centre of rotation. [2]
- (iv) Which triangle is T mapped onto by a stretch with the x-axis invariant? Write down the scale factor of the stretch. [2]

[2]

(v) $\mathbf{M} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$. Which triangle is *T* mapped onto by **M**?

Write down the name of this transformation.

(b)
$$\mathbf{P} = \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix}, \quad \mathbf{Q} = (-1 & -2), \quad \mathbf{R} = (1 & 2 & 3), \quad \mathbf{S} = \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix}.$$

Only some of the following matrix operations are possible with matrices P, Q, R and S above. QP, PQ, $\mathbf{P} + \mathbf{Q}$, PR. RS Write down and calculate each matrix operation that is possible. [6]

,

Answer the whole of this question on a sheet of graph paper. (a) Draw x and y axes from 0 to 12 using a scale of 1 cm to 1 unit on each axis. [1] (b) Draw and label triangle T with vertices (8, 6), (6, 10) and (10, 12). [1] (c) Triangle T is reflected in the line y = x. (i) Draw the image of triangle T. Label this image P. [2] (ii) Write down the matrix which represents this reflection. [2] (d) A transformation is represented by the matrix $\begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{pmatrix}$ (i) Draw the image of triangle T under this transformation. Label this image Q. [2] Describe fully this single transformation. (ii) [3] (e) Triangle T is stretched with the y-axis invariant and a stretch factor of $\frac{1}{2}$. Draw the image of triangle *T*. Label this image *R*. [2]

9

8
$$f(x) = 2x - 1$$
, $g(x) = \frac{3}{x} + 1$, $h(x) = 2^x$.

 (a) Find the value of fg(6).
 [1]

 (b) Write, as a single fraction, gf(x) in terms of x.
 [3]

 (c) Find $g^{-1}(x)$.
 [3]

 (d) Find hh(3).
 [2]

 (e) Find x when $h(x) = g\left(-\frac{24}{7}\right)$ [2]

The diagram shows triangles P, Q, R, S, T and U.

(a) Describe fully the **single** transformation which maps triangle

	(i)	T onto P,	[2]
	(ii)	Q onto T ,	[2]
	(iii)	T onto R,	[2]
	(iv)	T onto S,	[3]
	(v)	U onto Q .	[3]
(b)) Find the 2 by 2 matrix representing the transformation which maps triangle		
	(i)	T onto R,	[2]
	(ii)	U onto Q .	[2]

- (a) Describe fully the single transformation which maps
 - (i) triangle T onto triangle U,

 Answer(a)(i)
 [2]

 (ii) triangle T onto triangle V,
 [3]

(iii) triangle T onto triangle W,

Answer(a)(iii)		
	(iv) triangle U onto triangle X .	
Answer(a)(iv)		[3]
(b)	Find the matrix representing the transformation which maps	
	(i) triangle U onto triangle V ,	

Answer(b)(i) [2]

[2]

(ii) triangle U onto triangle X.

Answer(b)(ii)

The triangle *KLM* is shown on the grid.

(a) Calculate angle *KML*.

20

Answer(a) Angle KML = [2]

(b) On the grid, draw the shear of triangle *KLM*, with a shear factor of 3 and the *x*-axis invariant.

[2]

(ii) Describe fully the single transformation represented by the matrix \mathbf{M}^{-1} .

Answer(b)(ii)	 [2]
Answer(b)(ii)	 [2]

(b) The area of triangle E is $k \times$ area of triangle A. Write down the value of k.

- (b) Find the 2×2 matrix which represents this transformation.

Answer (b)

[2]