Vectors & Matrices – Paper 4 – Mark Scheme

Question 1

2 (a) (i)	$\begin{pmatrix} 15 \\ 8 \end{pmatrix}$
-----------	---

(ii) 17 www 2

(b) (i)
$$\frac{1}{2}$$
v $-\frac{1}{2}$ **c** or $\frac{1}{2}$ (**v** $-$ **c**) cao

(ii) $\frac{1}{2}c + \frac{1}{2}v$ again allowing brackets cao

(iii) $\frac{1}{6}$ v - $\frac{1}{2}$ c again allowing brackets cao

2 B1 each component

2ft ft their 15 and their 8. M1 for (their 15) 2 + (their 8) 2

2 M1 for $\frac{1}{2}\overrightarrow{CV}$ soi

M1 for \overrightarrow{OM} e.g. $\overrightarrow{OC} + \overrightarrow{CM}$ or better seen or \mathbf{v} – their (i) or \mathbf{c} + their (i)

M1 for any correct route e.g. $\overrightarrow{MV} + \overrightarrow{VL}$ or their (i) $-\frac{1}{3}$ v or $\frac{2}{3}$ v – their (b)(ii)

,

(a) w = 59 (angle in) isosceles (triangle)

x = 31 (angle in) semicircle (= 90) oe

y = 62 (angles in) same segment or (on) same arc (are =)

z = 28 (angles in) triangle (= 180)

- **(b) (i)** $\binom{2}{3}$
 - (ii) $\begin{pmatrix} -2\\4 \end{pmatrix}$
- (c) (i) $\frac{1}{3}$ t final answer
 - (ii) $\frac{1}{3}(-t+r)$ final answer
 - (iii) $\frac{1}{3}$ r final answer
 - (iv) $QP = \frac{1}{3}OR$ oe QP is parallel to OR or **r**

The marks for the reasons are **dependent** on the correct angle or correct ft angle

Any incorrect statement in reason loses that mark

1ft ft 90 – their w 1 Allow diameter

1

1

1

1

1ft

1

1

2ft

1

2

1dep

1dep

1

ft 180 - their(w + x + y) or 90 - their y

- ft $\begin{pmatrix} 0 \\ 7 \end{pmatrix}$ their (i)
- B1 ft for one correct element
- 2 M1 for correct unsimplified answer

or $\overrightarrow{TR} = -\mathbf{t} + \mathbf{r}$ oe or $\overrightarrow{TP} = \frac{1}{3} \overrightarrow{TR}$ oe

M1 for correct unsimplified answer or $\overrightarrow{QT} + \overrightarrow{TP}$ oe for any correct path or $\frac{1}{3}$ t + their (ii)

Dependent on correct answer in (iii)

Dependent on multiple of r as answer in (iii)

Question 3

- 4
- (a) (i) $\binom{25}{43}$
 - (ii) (16)
 - (iii) $\frac{1}{-2} \begin{pmatrix} 5 & -3 \\ -4 & 2 \end{pmatrix} \text{ isw}$ $\text{or } \begin{pmatrix} -\frac{5}{2} & \frac{3}{2} \\ 2 & -1 \end{pmatrix}$
- (b) Reflection only

x-axis oe

(c) $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

- 1 If 0,
 - If 0, 0 then SC1 for 25 and 43 seen
- 2 **B1** for 16 without brackets
- 2 **B1** for determinant = -2
 - or **B1** for $k \begin{pmatrix} 5 & -3 \\ -4 & 2 \end{pmatrix}$
 - If more than one transformation given no marks available
- 1 independent
 - **B1** for one correct column

9	(a) (i) $\binom{9}{5}$	1	
	(ii) $\begin{pmatrix} 4 \\ 7 \end{pmatrix}$	1 1	If 0, SC1 for $\overrightarrow{CB} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$ seen
	(iii) \overrightarrow{BA} or $-\overrightarrow{AB}$	1	BA not indicated as a vector is not enough.
	(iv) 10.3 (10.29 – 10.30)	2	M1 for $(\text{their } 9)^2 + (\text{their } 5)^2$
	(b) (i) 2u	1	
	(ii) $\frac{1}{2}(\mathbf{t}-\mathbf{u})$ oe	2	M1 for $\frac{1}{2}$ (their $\overrightarrow{BA} + \overrightarrow{AD} + \overrightarrow{DC}$) or equivalent
	(iii) $\frac{3}{2}\mathbf{u} + \frac{1}{2}\mathbf{t}$ oe ft	2ft	correct route for \overrightarrow{BM} , along obtainable vectors in terms of \mathbf{t} and \mathbf{u} or $\mathbf{M1}$ for correct unsimplified answer ft their (i) + their (ii) simplified or $\mathbf{t} + \mathbf{u}$ - their (b)(ii) simplified $\mathbf{M1}$ for correct (or \mathbf{ft}) unsimplified (i) + (ii) or $\mathbf{t} + \mathbf{u}$ - their (b)(ii)

Question 5

10 (a)	(i) (a) p+q	1	
	(b) $\frac{1}{2}$ $\mathbf{p} - \frac{1}{2}$ \mathbf{q} oe	2	M1 for $\overrightarrow{LC} + \overrightarrow{CM}$ o.e. can be written in terms of p and/or q
	(c) $\frac{3}{4}$ p + $\frac{3}{4}$ q oe cao	2	M1 for $\overrightarrow{AD} + \overrightarrow{DL} + \overrightarrow{LN}$ o.e can be written in terms of p and/or q ft their (i)(b)
	(ii) \overrightarrow{AN} is a multiple of \overrightarrow{AC} o.e	1	Must be vectors (dependent on answers to (a), (c))
(b)	(i) 30 (ii) 135	2 1 ft	M1 for $2x + x + 15 + 75 = 180$ or better ft 165 – their x but only if final answer obtuse

11	(a)	(i)	$\begin{pmatrix} 8 \\ 1 \end{pmatrix}$	1	
		(ii)	Point (3, 4) indicated	1	
		(iii)	$\begin{pmatrix} -3\\1 \end{pmatrix}$	1	
	(b)	(i)	$-\frac{5}{12}\mathbf{u} + \frac{2}{3}\mathbf{v} \text{ oe } 2 \text{ terms}$	4	M1 for any correct route L to K e.g. $LU + UK$ and B1 for $LU = \mathbf{u}/4$ oe or $OL = \frac{3}{4}\mathbf{u}$ oe and B1 for $UK = \frac{2}{3}(\mathbf{v} - \mathbf{u})$ oe or $VK = \frac{1}{3}(\mathbf{u} - \mathbf{v})$ oe all Bs are soi
		(ii)	$\frac{13}{24}u + \frac{1}{3}v \text{oe} 2 \text{ terms}$	2	M1 for correct route from O to M e.g. $OL + LM$ (can be in terms of \mathbf{u}, \mathbf{v})

7 (a)	(5, 3)	1	
(b) (i)	$3\mathbf{a} + \mathbf{c}$	1	
(ii)	$3\mathbf{a} + \frac{1}{2}\mathbf{c} \text{ or } \frac{1}{2}(6\mathbf{a} + \mathbf{c})$	2	M1 for \overrightarrow{OM} oe e.g $OA+AM$ or correct unsimplified answer
(iii)	$\mathbf{a} + \mathbf{c}$	1	
(iv)	$\frac{3}{2}\mathbf{a} + \frac{1}{2}\mathbf{c} \text{ or } \frac{1}{2}(3\mathbf{a} + \mathbf{c})$	2	M1 for $-\mathbf{c} + \frac{3}{2} \times$ their (iii) or $\mathbf{a} + \frac{1}{2} \times$ their (iii) or
			correct unsimplified answer or any correct route e.g. $CE + ED$
(c)	(CD) parallel (to OB) oe cao	1dep	Part (c) dependent on simplified (i) and (iv) Dep on (i) = $k \times$ (iv)
	$CD = \frac{1}{2} OB$ oe cao	1dep	Dep on (i) = $2 \times (iv)$ must be scalars

6	(a)	(i)	$\begin{pmatrix} -2 \\ -1 \end{pmatrix}$	1	
			7.28 [0] or $\pm \sqrt{53}$ as final answer	2	M1 for $\sqrt{2^2 + (-7^2)}$ oe
	1	(iii)	[m =] 3.5 oe and $[n =]$ -1.5 oe	6	B1 for $-2m + 2n = -10$ oe and B1 for $3m - 7n = 21$ oe and M1 for correct attempt to equate one set of coefficients and M1dep for elimination allow 1 arithmetic error overall ft their sim eqns for both m's or M1 for correct rearrangement (allow 1 slip) and M1dep for correct substitution ft their sim eqns for both m's and A1 for 3.5 or -1.5
	(b)	(i)	$-\mathbf{p} + \mathbf{q}$	1	Condone column vector used
		(ii)	$-\frac{3}{5}$ p + $\frac{3}{5}$ q oe	1 FT	Correct or ft $\frac{3}{5}$ (their (b)(i)) dep on $ap + bq$, $[a \neq 0, b \neq 0]$ Condone column vector used
		(iii)	Parallel similar 9:25 oe	1 1 1	Accept enlargement e.g 1: 2.77 [7] or 0.36: 1

6	(a) 5.83 or 5.830 to 5.831	2	Allow $\sqrt{34}$ as final answer M1 for $(3^2 + ([-]5)^2)$
	(b) (i) Vector drawn from P to Q at $(14, 3)$	1	Must have arrow in correct direction
	(ii) Points at (8, 11) and (13, 14)	1, 1	SC1 for points at (8, 5) and (3, 2)
	$ (c) 3\mathbf{a} - 2\mathbf{b} $	2	M1 for $\mathbf{a} - 3\mathbf{b} + 2\mathbf{a} + \mathbf{b}$ or $\overrightarrow{CD} + \overrightarrow{DE}$ oe Allow mixtures of vector notation.
	$(\mathbf{d}) \begin{pmatrix} 7 \\ -6 \end{pmatrix}$	1 1	
	(e) (i) b-c oe	1	Allow unsimplified

(ii) $MX = MB + BX$	M1	Any order for the M marks For a correct route
$\pm \frac{1}{4}$ or $\pm \frac{3}{4}$ used	M1	For a correct route
$\sqrt[3]{4} \mathbf{c} - \sqrt[1]{4} \mathbf{b} \text{ or } \sqrt[1]{4} (3\mathbf{c} - \mathbf{b}) \text{ or } \frac{3\mathbf{c}}{4} - \frac{\mathbf{b}}{4}$	A2	A1 for $\frac{1}{2}$ b + $\frac{3}{4}$ (c – b) oe Any correct unsimplified After 0 scored SC2 for $\frac{2}{3}$ c – $\frac{1}{6}$ b

7 (a) (i)	(15) (21)	1	
(ii)	not possible oe	1	
(iii)	(2) final answer	2	M1 for 30 – 28
(iv)	$ \begin{pmatrix} 4 & 13 \\ 0 & 0 \end{pmatrix} $ $ \begin{pmatrix} -5 & -9 \\ 1 & 0 \end{pmatrix} $	1	
(v)	$\begin{pmatrix} -5 & -9 \\ 1 & 0 \end{pmatrix}$	2	B1 for one correct row or column
(b)	$\frac{1}{2} \begin{pmatrix} 3 & -4 \\ -1 & 2 \end{pmatrix}$ or better isw	2	B1 for $k \begin{pmatrix} 3 & -4 \\ -1 & 2 \end{pmatrix}$ seen or implied or $\frac{1}{2} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ seen
			$\begin{bmatrix} \operatorname{or} & \overline{2} \\ c & d \end{bmatrix}$ seen

Qu			Answers	Mark	Part Marks
5	(a)	(i)	Correct reflection to (4, 8) (2, 9) (4, 9)	2	SC1 for reflection in line $x = 5$ or reflection in $y = k$ Ignore additional triangles
		(ii)	Correct rotation to (4, 2), (4, 3) (6, 3)	2	SC1 for rotation 180° with incorrect centre Ignore additional triangles
		(iii)	Shear, x-axis oe invariant, [factor] 2	3	B1 each (independent)
		(iv)	$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	2FT	FT their shear factor B1FT for one correct column or row in 2 by 2 matrix but not identity matrix or SC1FT for $\begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$
	(b)	(i)	$\mathbf{p} + 2\mathbf{s}$ final answer	2	M1 for recognising \overrightarrow{OQ} as position vector soi
		(ii)	$\mathbf{s} + \frac{1}{2}\mathbf{p}$ final answer	2	B1 for $\mathbf{s} + k\mathbf{p}$ or $k\mathbf{s} + \frac{1}{2}\mathbf{p}$
		(c)	parallel and $OQ = 2SR$ oe	1	or correct route $(k \neq 0)$

$\frac{3}{2}$ or 1.5	2	M1 for $\frac{14 - (-4)}{8 - (-4)}$ oe
$y = \frac{3}{2}x + 2 \text{oe}$	2	B1 for $y = their \frac{3}{2}x + c$ o.e. or $y = mx + 2$, $m \neq 0$
		SC1 for $\frac{3}{2}x + 2$
$\begin{pmatrix} 12 \\ 18 \end{pmatrix}$	1	
21.6 or 21.63[]	2	M1 FT for their 12^2 + their 18^2 oe
(a) $3b - 4a$	1	
(b) $\frac{1}{5}(6\mathbf{b} - 8\mathbf{a})$ oe simplified	2	M1 for $\frac{1}{5}(12\mathbf{a} + 6\mathbf{b}) - 4\mathbf{a}$ or $AR = AO + OR$
(c) $6\mathbf{a} + 3\mathbf{b}$ oe simplified	1	
OR is parallel to OT	1	Dep on \overrightarrow{OT} correct
$\frac{9}{4}$ or 2.25	2	M1 for $\left(\frac{3}{2}\right)^2$
	$y = \frac{3}{2}x + 2$ oe $\binom{12}{18}$ 21.6 or 21.63[] (a) $3\mathbf{b} - 4\mathbf{a}$ (b) $\frac{1}{5}(6\mathbf{b} - 8\mathbf{a})$ oe simplified (c) $6\mathbf{a} + 3\mathbf{b}$ oe simplified OR is parallel to OT	$y = \frac{3}{2}x + 2$ oe 2 $\begin{pmatrix} 12 \\ 18 \end{pmatrix}$ 21.6 or 21.63[] 2 (a) $3b - 4a$ 1 (b) $\frac{1}{5}(6b - 8a)$ oe simplified 2 (c) $6a + 3b$ oe simplified 1 OR is parallel to OT 1

1	(a) (i)	$\begin{pmatrix} 6 & 4 \\ -2 & 2 \end{pmatrix}$	1	
	(ii)	Not possible	1	
	(iii)	$\begin{pmatrix} 6 & 4 \\ -2 & 2 \end{pmatrix}$	2	B1 for one row or column correct
	(iv)	$\frac{1}{5} \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix} \text{ oe isw}$	2	B1 for $\frac{1}{5} \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ seen or $k \begin{pmatrix} 1 & -2 \\ 1 & 3 \end{pmatrix}$ seen
	(b)	1 column in C and 2 rows in D	1	Any clear indication
	(c)	Enlargement [Factor] 2 [Centre] (0, 0) oe	1 1 1	

11	(a) (i)	(-5,7)	1	
	(ii)	5	2	M1 for $\sqrt{(-3)^2 + 4^2}$ or better
	(b) (i)	(a) $\frac{3}{5}\mathbf{a} + \frac{2}{5}\mathbf{b}$ or $\frac{1}{5}(3\mathbf{a} + 2\mathbf{b})$ final answer	2	M1 for any correct vector path for \overrightarrow{ON}
		(b) $\frac{2}{5}$ a	2	M1 for any correct vector path for \overrightarrow{NY}
	(ii)	$NY = \frac{2}{5}BC$ oe	1dep	dep on (b)(i)(b) correct
		[NY] parallel to [BC]	1dep	dep on $\overline{NY} = k\mathbf{a}, k \neq 1$

(a) (i)

5.83 to 5.831 (ii)

(b) (i) $-2\mathbf{p} + \mathbf{q}$ oe

> $\overrightarrow{PS} = -\mathbf{p} + 2\mathbf{q} \text{ or } \overrightarrow{SP} = \mathbf{p} - 2\mathbf{q}$ (ii)

> > $\overline{MS} = -\frac{2}{3}\mathbf{p} + \frac{4}{3}\mathbf{q}$ seen

or $\overrightarrow{SM} = \frac{2}{3} \mathbf{p} - \frac{4}{3} \mathbf{q}$ seen

or $\overrightarrow{RM} = \frac{2}{3} (-2\mathbf{p} + \mathbf{q})$ soi

or $\overrightarrow{MR} = \frac{2}{3} (2\mathbf{p} - \mathbf{q})$ soi

or $\overline{MQ} = \frac{1}{3}(-2\mathbf{p} + \mathbf{q})$ soi

or $\overline{QM} = \frac{1}{3}(2\mathbf{p} - \mathbf{q})$ soi

 $\overrightarrow{PM} = \mathbf{p} + \overrightarrow{RM}$

or $\mathbf{p} - \overline{MR}$

or $-\mathbf{p} + \mathbf{q} + \overline{QM}$

 $or - \mathbf{p} + \mathbf{q} - \overline{MQ}$

 $[=-\frac{1}{3}\mathbf{p}+\frac{2}{3}\mathbf{q}]$

1:3 nfww

1

M1 for $3^2 + 5^2$ seen 2

1 accept unsimplified

B1

B1

Any correct route for \overrightarrow{PM} eg $\overrightarrow{PR} + \overrightarrow{RM}$ **M1**

After 0 scored, SC1 for 1:3

Question 16

2c + 3b(a)

(b) (i) 3c - 6a or 3(c - 2a)

(ii) 2c - 4a or 2(c - 2a)

M1 for \overrightarrow{OQ} recognised as pos vector. 2

M1 for any valid route from P to Q

 $-(3b-2a)-6a+their\overrightarrow{OQ}$ or $\overrightarrow{PQ} = \overrightarrow{PA} + \overrightarrow{AO} + \overrightarrow{OQ}$

or $\overrightarrow{PQ} = \overrightarrow{PB} + \overrightarrow{BQ}$

 $PQ = \frac{2}{3}AC$ oe (c)

PQ is parallel to AC

STRICT FT dep on $\overrightarrow{PQ} = k\overrightarrow{AC}$ from **(b)(i)** and 2FT

A1

1

B1FT for each statement

After 0 scored and $\overrightarrow{PQ} = k\overrightarrow{AC}$ in (b)(i) and (ii), allow **SC1FT** for correct statement, e.g. PQ is not parallel to

5 (a) (i)	$\begin{pmatrix} 0 & -4 \\ 4 & 0 \end{pmatrix}$	1	
(ii)	$\begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$	1	
(iii)	$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$	2	B1 for three correct elements
(iv)	$\begin{pmatrix} -13 \\ 5 \end{pmatrix}$	2	B1 for either correct in this form
(b)	$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$	3	M1 for understanding to find the inverse of Q and M1 for det = 1 or for $k \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} k \neq 0$ Alternative $ \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ Leading to $a - 2c = 1$ and $c = 0$ then $a = 1$ and $b - 2d = 1$ and $d = 1$ then $b = 2$
			M2 all four equations, M1 for a pair of correct equations

(ii) (-3, 5)

(b) (i) (a)
$$\frac{1}{2}$$
 (a+b) or $\frac{1}{2}$ **a** + $\frac{1}{2}$ **b**

(b)
$$\frac{1}{4}$$
 (**a** + **b**) or $\frac{1}{4}$ **a** + $\frac{1}{4}$ **b**

(c)
$$\frac{1}{4}$$
 (b - 3a) or $\frac{1}{4}$ b - $\frac{3}{4}$ a

(ii) 3:4 final answer

(c) (i) Triangle drawn at
$$(-3, -3), (-6, -3), (-6, -4\frac{1}{2})$$

(ii) $\begin{vmatrix} 0 & 1 \\ -1 & 0 \end{vmatrix}$

2 M1 for $5^2 + ([-]8)^2$ or better

1

2 M1 for $\mathbf{a} + \frac{1}{2}AB$ oe, e.g $\mathbf{a} + AM$, $OA + \frac{1}{2}AB$

1FT FT $\frac{1}{2}$ their (b)(i)(a) in terms of a and/or b in simplest form

2 M1 for -a + their (b)(i)(b) or any correct route

3 M1 for $[AN =] -a + \frac{1}{3}b$

A1 for $\frac{1}{4}$: $\frac{1}{3}$ oe or $AN = \frac{1}{3}(-3\mathbf{a} + \mathbf{b})$ or 3k to 4k

After 0 scored SC1 for final answer 4:3

B2 for 2 vertices correct in triangle or 3 correct co-ordinates soi in working

or

3

B1 for 1 vertex in triangle correct soi or triangle of correct size and orientation but wrong position

or

2

2

M1 for correct set up e.g.

$$\begin{pmatrix} -1.5 & 0 \\ 0 & -1.5 \end{pmatrix} \begin{pmatrix} 2 & 4 & 4 \\ 2 & 2 & 3 \end{pmatrix}$$

2 SC1 for 1 correct row or column

or for
$$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

Question 19

0	(0)	(2	13
,	(a)	1	13 14

(b) $\frac{1}{3} \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix} \text{ oe isw}$

(c)
$$[u =] 3$$
 $[v =] 2$

(d) 12 nfww

SC1 for one correct column or row

B1 for $k \begin{pmatrix} 3 & -2 \\ 0 & 1 \end{pmatrix}$ oe for $k \neq 0$ or $\frac{1}{3} \begin{pmatrix} a & c \\ b & d \end{pmatrix}$

3 B2 for two of 3 = u, 2u + 3v = 4u, 4 = 2 + v, u + 4v = 3 + 4v or B1 for one

or **M1** for $\begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} \begin{pmatrix} 0 & u \\ 1 & v \end{pmatrix} = \begin{pmatrix} 0 & u \\ 1 & v \end{pmatrix} \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$

B1 for
$$\begin{pmatrix} 3 & 2u + 3v \\ 4 & u + 4v \end{pmatrix}$$
 or $\begin{pmatrix} u & 4u \\ 2 + v & 3 + 4v \end{pmatrix}$

M1 for $w \times 2 - 8 \times 3$ [= 0] oe

Qu	Answers	Mark	Part Marks
10 (a)	$\mathbf{b} - \mathbf{a} \text{ or } - \mathbf{a} + \mathbf{b}$	1	
(b)	$\frac{4}{5}$ b - $\frac{3}{10}$ a or $\frac{1}{10}$ (8 b - 3 a)	4	B3 for correct unsimplified expression in a and b
			or
			M1 for $\overrightarrow{XA} + \overrightarrow{AC} + \overrightarrow{CM}$ or $\overrightarrow{XB} + \overrightarrow{BM}$
			or $-\frac{1}{5}$ (their (a)) + b $-\frac{1}{2}$ a
			or $\frac{4}{5}$ (their (a)) + $\frac{1}{2}$ a
			and M1 indep
			for $\pm \frac{1}{5}$ oe or $\pm \frac{4}{5}$ oe used
			After zero scored, SC2 for answer
			$\frac{1}{4}(3\mathbf{b} - \mathbf{a}) \text{ or } \frac{3}{4}\mathbf{b} - \frac{1}{4}\mathbf{a}$

Question 21

Quootioii .	= 1		
9 (a) (i)	у	1	
(ii)	x + y	1	
(iii)	x + 2y	2	M1 for a correct unsimplified route or identifying \overline{OS}
(b)	$-(\frac{1}{2}\mathbf{x}+\mathbf{y})$ oe	2	M1 for a correct unsimplified route or $\overrightarrow{GR} = -\frac{1}{2} \mathbf{x}$ or $\overrightarrow{RG} = \frac{1}{2} \mathbf{x}$
(c) (i)	$\overrightarrow{MG} = 2\mathbf{x} + 2\mathbf{y}$	2	M1 for a correct unsimplified route e.g. $2\overline{PQ}$
(ii)	$\overline{MH} = \mathbf{x} + \mathbf{y} \text{ or } \overline{HG} = \mathbf{x} + \mathbf{y}$	M1	Accept $\overrightarrow{HM} = -\mathbf{x} - \mathbf{y}$ or $\overrightarrow{GH} = -\mathbf{x} - \mathbf{y}$
	$\overrightarrow{MG} = 2\overrightarrow{MH}$ oe	A1	Dep on (c)(i) correct, arrows essential

	,				
7 (a) (i)	$\frac{1}{2}$ p	1			
(ii)	$\frac{1}{2}\mathbf{p} - \frac{1}{3}\mathbf{r}$	1			
(iii)	$\mathbf{p} + \frac{2}{3}\mathbf{r}$	1			
(b)	$\mathbf{r} + \frac{3}{2}\mathbf{p}$	2	M1 for correct unsimplified answer or for correct route or for recognising \overrightarrow{OU} as position vector		
(c)	6 nfww	3	B2 for $(2k)^2 + ([-]k)^2 = 180$ oe or M1 for $(2k)^2 + ([-]k)^2$ oe		

0 () (0	N		
8 (a) (i)	Not possible	1	
(ii)	$\begin{pmatrix} 4 & 0 \\ -2 & 10 \\ 6 & -8 \end{pmatrix}$ final answer	1	
(iii)	$\begin{pmatrix} 14 & 35 \\ -8 & -20 \end{pmatrix} $ final answer	2	M1 for one correct column or row
(iv)	(-6) final answer	2	M1 for 14 – 20
(v)	$\begin{pmatrix} -2 & 18 \\ -6 & 22 \end{pmatrix} $ final answer	2	M1 for one correct column or row
(b)	$\frac{1}{8} \begin{pmatrix} 5 & -3 \\ 1 & 1 \end{pmatrix}$ or better isw		B1 for $k \begin{pmatrix} 5 & -3 \\ 1 & 1 \end{pmatrix}$ seen or implied, $k \neq 0$
			or $\frac{1}{8} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ seen

			
11(a)(i)	$\begin{pmatrix} 1 & -18 \\ 6 & 13 \end{pmatrix}$	2	M1 for two or three correct elements
11(a)(ii)	$\frac{1}{11} \begin{pmatrix} 4 & 3 \\ -1 & 2 \end{pmatrix}$ or better isw	2	M1 for det = 11 or $[k]$ $\begin{pmatrix} 4 & 3 \\ -1 & 2 \end{pmatrix}$ isw
11(b)	Reflection	1	
	y-axis oe	1	
11(c)	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$	2	B1 for one correct column or row
11(d)(i)	$\frac{1}{7}(4\mathbf{a} + 3\mathbf{b}) \text{ or } \frac{4}{7}\mathbf{a} + \frac{3}{7}\mathbf{b}$	3	M2 for correct unsimplified answer seen or $\overline{AP} = \frac{3}{7}(\mathbf{b} - \mathbf{a})$ oe or $\overline{BP} = \frac{4}{7}(\mathbf{a} - \mathbf{b})$ oe
			or M1 for $\overline{AB} = \mathbf{b} - \mathbf{a}$ or $\overline{BA} = \mathbf{a} - \mathbf{b}$ or correct route for \overline{OP}
11(d)(ii)	$[m=] \frac{7}{3}$	2	B1 for each value
	$[k=] \frac{4}{3}$		or M1 for $\frac{m}{7}(4\mathbf{a} + 3\mathbf{b}) = \mathbf{b} + k\mathbf{a}$ oe

Question 25				
11(a)(i)	12.6 or 12.64 to 12.65	3	M2 for $12^2 + (-4)^2$ OR B1 for $\begin{pmatrix} 12 \\ -4 \end{pmatrix}$ M1 for $(their12)^2 + (their - 4)^2$	
11(a)(ii)	$\begin{pmatrix} -11\\13 \end{pmatrix}$	2	B1 for $\binom{-11}{k}$ or $\binom{k}{13}$ or for $[\overline{BA} =]\binom{-8}{7}$	
11(b)	$\frac{1}{2}$ (b – a) oe	2	M1 for correct route or correct unsimplified answer or B1 for $\overrightarrow{QS} = \mathbf{b} - \mathbf{a}$ oe	
11(c)(i)	$\begin{pmatrix} 9 & 50 \\ 10 & 69 \end{pmatrix}$	2	B1 for 2 correct elements	
11(c)(ii)	$\frac{1}{11} \begin{pmatrix} 8 & -5 \\ -1 & 2 \end{pmatrix} \text{ oe isw}$	2	B1 for $k \begin{pmatrix} 8 & -5 \\ -1 & 2 \end{pmatrix}$ or $\frac{1}{11} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ or det = 11 soi	

Question	lestion 20				
2(a)(i)	$\binom{6}{17}$	2	B1 for each		
2(a)(ii)	6.4[0] or 6.403	2	M1 for $4^2 + 5^2$		
2(b)	(1, 2)	1			
2(c)	(0, -2)	1			
2(d)	$\frac{1}{2}\mathbf{c} + \frac{1}{3}\mathbf{d}$		B2 for correct unsimplified answer or M1 for $\overline{CT} = -\mathbf{c} + \frac{2}{3}\mathbf{d}$ oe or $\overline{TC} = \mathbf{c} - \frac{2}{3}\mathbf{d}$ oe or for correct route		