Vectors – Paper 2 – Mark Scheme

Question 1

(a) $2p 3p + q \dots 5p + 3q cao$	1, 1, 1							
(b) (i) all 4 plotted correctly ft	2	B1 2 or 3 correct						
(ii) a (straight) line	1	Allow linear, collinear						
Question 2								
	1							
	1							
(b) $\frac{1}{4}$ g + $\frac{3}{4}$ h	2	M1 for $\overrightarrow{OH} + \overrightarrow{HN}$ or $\mathbf{h} + \frac{1}{4}$ (a)						
		\overrightarrow{OG} + \overrightarrow{GN} or $\mathbf{g} - \frac{3}{4}$ (a)						
tion 3	-	1						
$t = 2\frac{1}{2}$	2	M1 (b) $t = (b)(3t - 5)$						
tion 4								
(a) (i) $-r + q$ or $q - r$ (ii) $\frac{1}{2}(3q - r)$ oe	1 1	Must be simplified						
(b) correct working	3	M1 for $MX = \frac{1}{2} \mathbf{r} + \frac{3}{4}$ their ($-\mathbf{r} + \mathbf{q}$) M1 using a different route for XS or $\frac{1}{2}$ MS E1 dep correct simplification and conclusion						
tion 5	i							
(a) $\frac{1}{2}$ a $-\frac{1}{2}$ c oe	2	M1 correct but unsimplified e.g. $\frac{1}{2}$ a + $-\frac{1}{2}$ c						
(b) $\frac{3}{4}$ a + $\frac{3}{4}$ c oe	2	M1 correct but unsimplified						
tion 6		·						
(a) $\frac{1}{2}$ a + $\frac{1}{2}$ b oe	2	M1 unsimplified or any correct route						
		e.g a + $\frac{1}{2}$ (b - a) or OA + AC						
(b) $-1\frac{1}{2}\mathbf{a} + 1\frac{1}{2}\mathbf{b}$ oe	2	M1 unsimplified or any correct route						
		e.g. CD = $1\frac{1}{2}$ AB or b - a + $\frac{1}{2}$ (b - a)						
tion 7								
(a) (3, 3 ¹ / ₂)	1							
(b) $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$	1							
(c) Correct perpendicular bisector with	2	B1 line through $(3, 3\frac{1}{2})$ perp to <i>AB</i>						
	(a) $2p \ 3p + q \dots 5p + 3q \ cao$ (b) (i) all 4 plotted correctly ft (ii) a (straight) line tion 2 (a) $g - h$ (b) $\frac{1}{4}g + \frac{3}{4}h$ (b) $\frac{1}{4}g + \frac{3}{4}h$ tion 3 $t = 2\frac{1}{2}$ tion 4 (a) (i) $-r + q \ or q - r$ (ii) $\frac{1}{2}(3q - r) \ oe$ (b) correct working (a) $\frac{1}{2}a - \frac{1}{2}c \ oe$ (b) $\frac{3}{4}a + \frac{3}{4}c \ oe$ tion 6 (a) $\frac{1}{2}a + \frac{1}{2}b \ oe$ (b) $-1\frac{1}{2}a + 1\frac{1}{2}b \ oe$ (c) $(3, 3\frac{1}{2})$ (d) $(4) \frac{4}{3}$	(a) $2p \ 3p + q \dots 5p + 3q \ cao$ 1, 1, 1 (b) (i) all 4 plotted correctly ft 2 (ii) a (straight) line 1 tion 2 1 (a) $g - h$ 1 (b) $\frac{1}{4}g + \frac{3}{4}h$ 2 tion 3 2 tion 4 2 (a) (i) $-r + q \text{ or } q - r$ 1 (ii) $\frac{1}{\sqrt{2}(3q - r)}$ oe 1 (b) correct working 3 tion 5 2 (a) $\frac{1}{2}a - \frac{1}{2}c$ oe 2 (b) $\frac{3}{4}a + \frac{3}{4}c$ oe 2 tion 6 2 (a) $\frac{1}{2}a + \frac{1}{2}b$ oe 2 (b) $-1\frac{1}{2}a + 1\frac{1}{2}b$ oe 2 (b) $-1\frac{1}{2}a + 1\frac{1}{2}b$ oe 2 (b) $-1\frac{1}{2}a + 1\frac{1}{2}b$ oe 1 (b) $-1\frac{1}{2}a + 1\frac{1}{2}b$ oe 1 (b) $\begin{pmatrix} 4\\ 3 \end{pmatrix}$ 1						

17	(a)	(i) $3a + c$		2	B 1	AO + OC + CB or $-a + c + 4a$
		(ii) $2\frac{1}{2}a + \frac{1}{2}c$ oe		2	M	$\mathbf{l} \mathbf{a} + \frac{1}{2}$ their (a)(i)
	(b)	D marked ³ / ₄ way along CB		2	B1	D on CB
Ques	tion	9			I	
19 (a	a)	$-\mathbf{p} + \mathbf{t}$		1		
(t))	$\mathbf{p} + 2\mathbf{t}$		2	M1 for answer	r a correct route from P to R or unsimplified
(0	:)	2(p + t) or $2p + 2t$	2	ft		r OR or a correct route or ft p + their (b) plified provided their (b) is a vector
Ques	tion	10				
18 (:		$\mathbf{p} - \frac{1}{3}\mathbf{q}$ oe		2	M1 \overline{Q}	$\vec{R} + \vec{RX}$ oe or $-\mathbf{q} + \mathbf{p} + (\frac{2}{3})\mathbf{q}$ oe
(b)	$\frac{1}{2}\mathbf{p} + \frac{5}{6}\mathbf{q}$ oe	2	ft	ft q +	$\frac{1}{2}$ their (a) but must be vectors
						for $\overrightarrow{OQ} + \overrightarrow{QM}$ oe
Ques	tion	⊢ 11				
		$\frac{1}{2}(\mathbf{c}-\mathbf{d})$ oe		2	M1 1	for $\mathbf{DC} = \mathbf{c} - \mathbf{d}$ oe or correct route
					Thei	r (a) + d simplified
		$\frac{1}{3}c + \frac{2}{3}d$ oe		2ft		for any correct route from O to E stated
Ques						
20 (a	a) (i)	$\mathbf{p} + \frac{1}{2}\mathbf{r}$		1		
	(ii)	2 p + r		1f	t 2	× their (i)
(b)	Midpoint of RQ		1		
Ques	tion	13	I			
19 (a		hexagon			1	
(1	b) (i)	$-\mathbf{b} + \mathbf{c}$			1	
	(ii)	$\mathbf{b} - \frac{1}{2}\mathbf{c}$			2	B1 for OB + BA or any correct route
	(iii)	$\mathbf{b} = \frac{1}{2}\mathbf{c}$ $-\mathbf{b} + \mathbf{c}$			2 1FT	= their (b)(i)
Ques		(0)				
16	(a	$\binom{9}{6}$			1	
	(b) 10.8 or 10.81 to 10.82			2FT	M1 for $\sqrt{(their 9)^2 + (their 6)^2}$ A1 for 10.8 or FT correctly evaluated
) (17, 13)			1FT	FT <i>their</i> 9 and 6.

19	(a)	-2:	$\mathbf{a} - 2\mathbf{c}$ oe	2				$=$ $-\mathbf{a} - \mathbf{c}$ or for any correct route or correct
		2				-		l expression
	(b)	2 a	+ c	2		M1 for express		correct route or correct unsimplified
	(c)	-a	- c oe	2FT				or correct answer correct non direct route from O to E or for
						correct unsimp		mplified expression or for correct FT
Ques	stion	10	6					i
14	(1	I)	$\mathbf{p} + \mathbf{r}$			1		
	0))	$\frac{3}{2}$ p + $\frac{1}{2}$ r			2	2	M1 for correct route from O to M
								or
								M1 for $\mathbf{p} + \frac{1}{2}$ their(a)
Ques	stion	17	7		-			
19 (a) (i) ($\mathbf{c} - \mathbf{a}$		1			
	(ii) -	$-\frac{1}{3}$ a + $\frac{1}{3}$ c		3			for $-a + \frac{1}{3}(c + 2a)$ oe
								$-\mathbf{a} + \mathbf{c} + 2\mathbf{a} - \frac{2}{3}(\mathbf{c} + 2\mathbf{a})$
							Or	M1 for a correct route from A to X
(b)		\overrightarrow{AC} is a multiple of \overrightarrow{AX}		1		oe	
		and they share a common point [A]					oe	
Ques	stion	18	8					
14 ((a)	$\frac{1}{2}$	$\mathbf{b} - \frac{1}{2}\mathbf{a}$ oe	2	M1	l for $\frac{1}{2}$	$(\overline{AC}$	$\vec{O} + \vec{OB}$) of or correct unsimplified
		$\mathbf{a}) \qquad \frac{1}{2}\mathbf{b} - \frac{1}{2}\mathbf{a} \text{oe} \qquad \qquad$			route e.g. $\overrightarrow{AO} + \overrightarrow{OB} + \overrightarrow{BP}$			
					or	-a + b	$+\frac{1}{2}$	$\overrightarrow{BA} = -\mathbf{a} + \mathbf{b} + \frac{1}{2}(\mathbf{a} - \mathbf{b})$
((b)	$\frac{1}{4}\mathbf{a}$	$+\frac{3}{4}\mathbf{b}$ oe	2	M1	l for \overline{c}	\overrightarrow{DA} +	\overrightarrow{AQ} oe or correct unsimplified route
Ques	stion	19	9					
14 (a)	a -	+2b - a or a - (a - 2b) oe	1				
(b)	Pa	rallelogram	1				
		Pl	Mequal and parallel to QR	1				nswer trapezium with reason PM
		or				paral	lel to	OQR
		an	<i>M</i> or <i>PS</i> parallel to QR and <i>MR</i> found = a so 2 pairs of rallel sides					

Que	stion	20					
19	(a)	(i)	- b + a		1		
		(ii)	$\mathbf{b} + \frac{1}{2}\mathbf{a}$		1		
	(b)		$[\overrightarrow{OX} =] \mathbf{b} + \frac{1}{3}(-\mathbf{b} + \mathbf{a})$ oe		М1		
			$\frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$ oe		A1		
			2 statements from: $\overrightarrow{OM} = \mathbf{b} + \frac{1}{2}\mathbf{a}$ oe		B2	B1 for any one of these statements	
			or $[\overrightarrow{OX} =] \frac{2}{3}(\mathbf{b} + \frac{1}{2}\mathbf{a})$ oe				
			or $\overrightarrow{OX} = \frac{2}{3} \overrightarrow{OM}$ oe				
Question 21							
4		:	5.83 or 5.830 to 5.831		2 M	11 for $\sqrt{(-3)^2 + 5^2}$	
Que	stion	22		+			
23	(a)	$\frac{1}{3}(-$	$-\mathbf{a} + \mathbf{b}$) oe	2	M1 for	any correct route eg $AO+OB+\frac{2}{3}BA$	
					or B1	for $\overrightarrow{AB} = -\mathbf{a} + \mathbf{b}$ oe	
	(b)	$\frac{2}{3}a$	$+\frac{1}{3}\mathbf{b}$ oe simplified	2FT	FT the	<i>ir</i> (a) + a simplified only if in terms of a and b.	
						identifying \overrightarrow{OC} as position vector ect route in any form or for correct unsimplified	
Que	stion	23					
17	(a)	1	b — a		2	M1 if unsimplified or correct route in terms of P,Q,R, S	
	(b)		$\frac{5}{8}\mathbf{x} + \frac{3}{8}\mathbf{y}$		2	M1 for a correct route e.g. $OX + XM$ or for $\frac{3}{8}\overrightarrow{XY}$ or $\frac{5}{8}\overrightarrow{YX}$	

Question 24

24 (a)	a + b - c	1	
(b)	$\frac{1}{2}\mathbf{a} + \frac{1}{2}\mathbf{b} + \frac{1}{2}\mathbf{c}$	2	M1 for $\mathbf{c} + \frac{1}{2}$ (<i>their</i> (a)) or for a correct route e.g. $\overrightarrow{OC} + \frac{1}{2}\overrightarrow{CB}$, \overrightarrow{OQ}
(c)	$\frac{1}{2} \mathbf{c} - \frac{1}{2} \mathbf{a} - \frac{1}{6} \mathbf{b}$	2	M1 for $\frac{1}{3}\mathbf{b} - \frac{1}{2}$ (<i>their</i> (a)) or other correct route e.g. $-\frac{2}{3}\mathbf{b} - \mathbf{a} + their$ (b), $\overrightarrow{PO} + \overrightarrow{OQ}$

Question 25

9	$\frac{1}{4}\mathbf{a} - \frac{1}{4}\mathbf{b} - \frac{1}{4}\mathbf{c} \text{oe}$	2	B1 for $\overrightarrow{GK} = \mathbf{a} - \mathbf{b} - \mathbf{c}$ oe soi or $\overrightarrow{GL} = \frac{1}{4} (\overrightarrow{GK})$
			or for any correct route

Question 26

		•		
	14(a)	(9, -4)	1	
	14(b)	-5	2	M1 for $t^2 + 12^2 = 13^2$ oe or SC1 for answer 5 or ± 5
Que	estion 2	27		

22(h) 5a h 2 M1 for a correct route	22(a)	6a - 2b or 2(3a - b)	2	M1 for $4a + b - (-2a + 3b)$ or better
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	22(b)	5 a – b	2	M1 for a correct route e.g. $\overrightarrow{OD} + \overrightarrow{DE}$, $4\mathbf{a} + \mathbf{b} + \mathbf{a} - 2\mathbf{b}$, \overrightarrow{OE}